MACHINE LEARNING AS AN ALTERNATIVE WAVEFUNCTION ANSATZ TO IMPROVE VARIATIONAL MONTE CARLO

STUDENT MEMBERS ALBERTO ACEVEDO MICHAEL CURRY BRETT LEROUX <u>ACADEMIC MENTOR</u> DR. SHANTANU JOSHI <u>INDUSTRY MENTOR</u> DR. NICHOLAS MALAYA

Intro

- 1 AMD and Quantum Monte Carlo
- 2 Variational Quantum Monte Carlo: Introduction
- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

OUTLINE FOR SECTION 1

1 AMD and Quantum Monte Carlo

- 2 Variational Quantum Monte Carlo: Introduction
- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

AMD AND FRONTIER (EXASCALE COMPUTING)

- Epyc CPUs
- Radeon GPUs

AMD AND FRONTIER (EXASCALE COMPUTING)

- Epyc CPUs
- Radeon GPUs
- In 2021: Frontier will become the largest supercomputer ever constructed.

■ Uses Quantum Monte Carlo methods to solve the Schrödinger equation $\hat{H}\Psi = E\Psi$.

• Wavefunctions describe molecular, atomic, and subatomic systems.

- Wavefunctions describe molecular, atomic, and subatomic systems.
- For a molecule with N electrons, the wavefunction takes the form $\Psi(r_1, r_2, \ldots, r_N)$.

- Wavefunctions describe molecular, atomic, and subatomic systems.
- For a molecule with N electrons, the wavefunction takes the form $\Psi(r_1, r_2, \ldots, r_N)$.
 - r_i is the position of electron *i* in three-dimensional space.

- Wavefunctions describe molecular, atomic, and subatomic systems.
- For a molecule with N electrons, the wavefunction takes the form $\Psi(r_1, r_2, \ldots, r_N)$.
 - r_i is the position of electron *i* in three-dimensional space.
 - Ψ is a function of 3N variables.

- Wavefunctions describe molecular, atomic, and subatomic systems.
- For a molecule with N electrons, the wavefunction takes the form $\Psi(r_1, r_2, \ldots, r_N)$.
 - r_i is the position of electron *i* in three-dimensional space.
 - Ψ is a function of 3N variables.
 - $|\Psi(r_1, r_2, \ldots, r_N)|^2$ gives the **probability** that the electrons are in a given configuration r_1, r_2, \ldots, r_N .

- Wavefunctions describe molecular, atomic, and subatomic systems.
- For a molecule with N electrons, the wavefunction takes the form $\Psi(r_1, r_2, \ldots, r_N)$.
 - r_i is the position of electron *i* in three-dimensional space.
 - Ψ is a function of 3N variables.
 - $|\Psi(r_1, r_2, \ldots, r_N)|^2$ gives the **probability** that the electrons are in a given configuration r_1, r_2, \ldots, r_N .
- Knowing the configuration of electrons can help infer chemical properties of molecules and materials.

• The Pauli exclusion principle is an empirical law that states that two interacting fermions (electrons are fermions) cannot occupy the same quantum state.

- The Pauli exclusion principle is an empirical law that states that two interacting fermions (electrons are fermions) cannot occupy the same quantum state.
- In mathematical terms, the wavefunction must obey antisymmetry. This means that exchanging two particles must flip only the sign of the wavefunction:

$$\Psi(\cdots, r_i, \cdots, r_j, \cdots) = -\Psi(\cdots, r_j, \cdots, r_i, \cdots)$$

EXAMPLE: TWO FERMIONS IN A 1-DIMENSIONAL BOX

- Wavefunction $\Psi(x_1, x_2)$
- x₁, x₂ are positions of particles.
- $|\Psi(x_1, x_2)|^2$ is probability

EXAMPLE: TWO FERMIONS IN A 1-DIMENSIONAL BOX

- Wavefunction $\Psi(x_1, x_2)$
- x₁, x₂ are positions of particles.
- $|\Psi(x_1, x_2)|^2$ is probability

• Ψ must be **antisymmetric**: $\Psi(x_1, x_2) = -\Psi(x_2, x_1).$

APPROXIMATING WAVEFUNCTIONS

• Choose a class of wavefunctions $\Psi_{\alpha}(r)$ parameterized by α .

- Choose a class of wavefunctions $\Psi_{\alpha}(r)$ parameterized by α .
- Optimize alpha to find the ground state wavefunction.

Need a well informed "guess" (ansatz) of the function $\Psi_{\alpha}(r)$ which best describes the system.

Need a well informed "guess" (ansatz) of the function $\Psi_{\alpha}(r)$ which best describes the system.

• Solution 1: Use your knowledge of physics to design the ansatz.

Need a well informed "guess" (ansatz) of the function $\Psi_{\alpha}(r)$ which best describes the system.

- Solution 1: Use your knowledge of physics to design the ansatz.
- **Solution 2** Use neural networks as function approximators.

Need a well informed "guess" (ansatz) of the function $\Psi_{\alpha}(r)$ which best describes the system.

- Solution 1: Use your knowledge of physics to design the ansatz.
- **Solution 2** Use neural networks as function approximators.

Many methods e.g. PauliNet do both.

- We aim to investigate the feasibility of **deep learning** to produce new and powerful forms of **ansatz**.
- Need to enforce a property known antisymmetry due to the Pauli exclusion principle.
- The traditional method for enforcing antisymmetry uses a technique known as the **Slater determinant**, which is a major part of the computational cost of ansatz that use it.
- We focus on a different technique for enforcing antisymmetry known as the **Vandermonde determinant**.

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} \varphi_1(r_1) & \varphi_2(r_1) & \cdots & \varphi_N(r_1) \\ \varphi_1(r_2) & \varphi_2(r_2) & \cdots & \varphi_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(r_N) & \varphi_2(r_N) & \cdots & \varphi_N(r_N) \end{vmatrix}$$

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} \varphi_1(r_1) & \varphi_2(r_1) & \cdots & \varphi_N(r_1) \\ \varphi_1(r_2) & \varphi_2(r_2) & \cdots & \varphi_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(r_N) & \varphi_2(r_N) & \cdots & \varphi_N(r_N) \end{vmatrix}$$

Computational cost: $O(N^3)$

VANDERMONDE DETERMINANTS

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} 1 & \varphi(r_1)^1 & \varphi(r_1)^2 & \cdots & \varphi(r_1)^{N-1} \\ 1 & \varphi(r_2)^1 & \varphi(r_2)^2 & \cdots & \varphi(r_2)^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi(r_N)^1 & \varphi(r_N)^2 & \cdots & \varphi(r_N)^{N-1} \end{vmatrix}$$

VANDERMONDE DETERMINANTS

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} 1 & \varphi(r_1)^1 & \varphi(r_1)^2 & \cdots & \varphi(r_1)^{N-1} \\ 1 & \varphi(r_2)^1 & \varphi(r_2)^2 & \cdots & \varphi(r_2)^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi(r_N)^1 & \varphi(r_N)^2 & \cdots & \varphi(r_N)^{N-1} \end{vmatrix}$$

$$= \prod_{i < j} (\varphi(r_i) - \varphi(r_j))$$

VANDERMONDE DETERMINANTS

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} 1 & \varphi(r_1)^1 & \varphi(r_1)^2 & \cdots & \varphi(r_1)^{N-1} \\ 1 & \varphi(r_2)^1 & \varphi(r_2)^2 & \cdots & \varphi(r_2)^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi(r_N)^1 & \varphi(r_N)^2 & \cdots & \varphi(r_N)^{N-1} \end{vmatrix}$$

$$= \prod_{i < j} (\varphi(r_i) - \varphi(r_j))$$

Computational cost: $O(N^2)$

OUTLINE FOR SECTION 2

1 AMD and Quantum Monte Carlo

2 Variational Quantum Monte Carlo: Introduction

- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

THE GROUND STATE ENERGY OF THE SYSTEM

 Variational Monte Carlo is used to find the ground state energy of the system.

THE GROUND STATE ENERGY OF THE SYSTEM

- Variational Monte Carlo is used to find the ground state energy of the system.
- All wavefunctions ϕ other than the true ground state Ψ_0 have higher energy: $\mathbb{E}_{\Psi_0}[E] \leq \mathbb{E}_{\phi}[E]$.

- Variational Monte Carlo is used to find the ground state energy of the system.
- All wavefunctions ϕ other than the true ground state Ψ_0 have higher energy: $\mathbb{E}_{\Psi_0}[E] \leq \mathbb{E}_{\phi}[E]$.
- The system's properties are defined by an operator H known as the Hamiltonian. Given H and the wavefunction Ψ , the expected energy of the system is:

$$\mathbb{E}[E] = \frac{\int \Psi_{\alpha}^{*}(\vec{r}) H \Psi_{\alpha}(\vec{r}) dV}{\int |\Psi_{\alpha}(\vec{r})|^{2} dV}$$

We want to minimize this quantity.

In general, the expected energy cannot be computed analytically. An approximation is

$$\mathbb{E}[E] \approx \frac{1}{N} \sum_{i=1}^{N} E_L(x_i)$$

- E_L is the **local energy** associated with a particle in a single, specific configuration.
- $\{x_i\}$ is a set of random samples from $|\Psi_{\alpha}(\vec{r})|^2$. These are drawn using Markov-chain Monte Carlo (MCMC).

SAMPLING WITH MARKOV-CHAIN MONTE CARLO

Using the two particles in a box ansatz as an example. We set $(\alpha_1, \alpha_2) = (1.95, 0.95).$ $\Psi_{\alpha_1,\alpha_2}(x_1,x_2) = (1-x_1^{2\alpha_1})(1-x_2^{2\alpha_2})x_2 - (1-x_2^{2\alpha_1})(1-x_1^{2\alpha_2})x_1$ 0.4 $|\Psi(x_1, x_2)|^2$ 0.3 0.2 0.1 0.0 -1.00 1.00^{0.75^{0.50.25^{0.071.00}}} 0.50 1.00 د Sampling with MCMC 4500 Actual $|\Psi_{\alpha_1,\alpha_2}(x_1,x_2)|^2$. times.
SAMPLING WITH MARKOV-CHAIN MONTE CARLO

Using the Two particles in a box Ansatz as an example. We set $(\alpha_1, \alpha_2) = (1.95, 0.95).$ $\Psi_{\alpha_1, \alpha_2}(x_1, x_2) = (1 - x_1^{2\alpha_1})(1 - x_2^{2\alpha_2})x_2 - (1 - x_2^{2\alpha_1})(1 - x_1^{2\alpha_2})x_1$

Sampling with MCMC 10000 times.

Actual $|\Psi_{\alpha_1,\alpha_2}(x_1,x_2)|^2$.

GRADIENT DESCENT ON THE APPROXIMATED ENERGY

GD to approximate ground state energy of the two fermions in a box model. $E_0 = 6.168$ in our units. Converges to $\alpha_1 = 0.876$ and $\alpha_2 = 0.52$.

ANSATZ WITH OPTIMAL ALPHAS VS EXACT SOLUTION

Using $\alpha_1 = 0.876$ and $\alpha_2 = 0.52$ Exact solution. with our ansatz.

OUTLINE FOR SECTION 3

- **1** AMD and Quantum Monte Carlo
- 2 Variational Quantum Monte Carlo: Introduction
- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

We focus on the study of N-electron systems: that is, atoms and molecules with electrons surrounding the nucleus. The Hamiltonian (which defines the energy) of systems like is:

$$\sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2\right) + V_{e-n}(\vec{r_1}, ..., \vec{r_N}) + V_{e-e}(\vec{r_1}, ..., \vec{r_N})$$

- Kinetic energy of electrons: defined in terms of Laplacian of the wavefunction.
- Electron-nucleus energy
- Electron-electron energy

Recall the: **Pauli exclusion principle:** Two identical fermions cannot occupy the same state.

$$|\Psi(\cdots, r_i, \cdots, r_j, \cdots)|^2 = |\Psi(\cdots, r_j, \cdots, r_i, \cdots)|^2$$
$$\Psi(\cdots, r_i, \cdots, r_j, \cdots) = -\Psi(\cdots, r_j, \cdots, r_i, \cdots)$$

Suppose we have single-electron basis functions φ_j . A first attempt at an ansatz might be:

$$\Psi(r_1,\cdots,r_N)=\prod_i\varphi_i(r_i)$$

Suppose we have single-electron basis functions φ_j . A first attempt at an ansatz might be:

$$\Psi(r_1,\cdots,r_N)=\prod_i\varphi_i(r_i)$$

This is known as the Hartree product ansatz, but it does not enforce antisymmetry when r_i , r_j switched. One can extend the idea of the Hartree product ansatz as follows:

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} \varphi_1(r_1) & \varphi_2(r_1) & \cdots & \varphi_N(r_1) \\ \varphi_1(r_2) & \varphi_2(r_2) & \cdots & \varphi_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(r_N) & \varphi_2(r_N) & \cdots & \varphi_N(r_N) \end{vmatrix}$$

One can extend the idea of the Hartree product ansatz as follows:

$$\Psi(r_1, \cdots, r_N) = \begin{vmatrix} \varphi_1(r_1) & \varphi_2(r_1) & \cdots & \varphi_N(r_1) \\ \varphi_1(r_2) & \varphi_2(r_2) & \cdots & \varphi_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(r_N) & \varphi_2(r_N) & \cdots & \varphi_N(r_N) \end{vmatrix}$$

Because this is a determinant, permuting r_i, r_j swaps rows and therefore swaps sign – antisymmetry is enforced perfectly.

The Vandermonde determinant

Suppose we have some basis function φ applied to each electron configuration. The Vandermonde determinant is defined as:

$$\det_{V} = \begin{vmatrix} 1 & \varphi(r_{1})^{1} & \varphi(r_{1})^{2} & \cdots & \varphi(r_{1})^{N-1} \\ 1 & \varphi(r_{2})^{1} & \varphi(r_{2})^{2} & \cdots & \varphi(r_{2})^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi(r_{N})^{1} & \varphi(r_{N})^{2} & \cdots & \varphi(r_{N})^{N-1} \end{vmatrix}$$

This is a determinant: swapping r_i will switch sign, can enforce antisymmetry.

The Vandermonde determinant

Suppose we have some basis function φ applied to each electron configuration. The Vandermonde determinant is defined as:

$$\det_{V} = \begin{vmatrix} 1 & \varphi(r_{1})^{1} & \varphi(r_{1})^{2} & \cdots & \varphi(r_{1})^{N-1} \\ 1 & \varphi(r_{2})^{1} & \varphi(r_{2})^{2} & \cdots & \varphi(r_{2})^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi(r_{N})^{1} & \varphi(r_{N})^{2} & \cdots & \varphi(r_{N})^{N-1} \end{vmatrix}$$

This is a determinant: swapping r_i will switch sign, can enforce antisymmetry.

But it can be computed using a more efficient expression.

$$\det_V = \prod_{i < j} (\varphi(r_i) - \varphi(r_j))$$

Helium (2 electrons) Slater vs Vandermonde

$$\Psi_{slat}(r_1, r_2) = e^{-\alpha_1 r_1} e^{-\alpha_2 r_2} - e^{-\alpha_1 r_2} e^{-\alpha_2 r_1}$$

$$\Psi_{Van}(r_1, r_2) = e^{-\alpha_1(r_1 + r_2)} (e^{-\alpha_2 r_1} - e^{-\alpha_2 r_2})$$

Two particles in a box: Vandermonde and Slater

Convergence plot for the two-fermions-in-a-box system near the ground state energy

OUTLINE FOR SECTION 4

- 1 AMD and Quantum Monte Carlo
- 2 Variational Quantum Monte Carlo: Introduction
- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

• It's quite natural to think of VMC as machine learning – we are minimizing a nonlinear function Ψ_{α} by gradient descent.

- It's quite natural to think of VMC as machine learning we are minimizing a nonlinear function Ψ_{α} by gradient descent.
- PauliNet is one of a few recent deep learning architectures for approximation of wavefunctions.

- It's quite natural to think of VMC as machine learning we are minimizing a nonlinear function Ψ_{α} by gradient descent.
- PauliNet is one of a few recent deep learning architectures for approximation of wavefunctions.
- The structure of the ansatz has a widely-used design what is known as a "Slater-Jastrow-Backflow" ansatz. (QMCPACK uses a similar form.)

- It's quite natural to think of VMC as machine learning we are minimizing a nonlinear function Ψ_{α} by gradient descent.
- PauliNet is one of a few recent deep learning architectures for approximation of wavefunctions.
- The structure of the ansatz has a widely-used design what is known as a "Slater-Jastrow-Backflow" ansatz. (QMCPACK uses a similar form.)
- But parts of this are replaced with flexible neural networks. The weights of these networks are what varies to minimize the energy.

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\uparrow}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

For electrons with coordinates r_i , the ansatz is as follows:

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\uparrow}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

 φ are Hartree-Fock functions (physically derived single-electron wavefunctions, treated as inputs)

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\uparrow}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

- φ are Hartree-Fock functions (physically derived single-electron wavefunctions, treated as inputs)
- J_{α} is what is known as the Jastrow factor, represented as a neural network.

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\uparrow}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

- φ are Hartree-Fock functions (physically derived single-electron wavefunctions, treated as inputs)
- J_{α} is what is known as the Jastrow factor, represented as a neural network.
- $f_{\mu,\alpha}$ are the backflow factors which scale the Hartree-Fock functions: another neural network.

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\uparrow}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

- φ are Hartree-Fock functions (physically derived single-electron wavefunctions, treated as inputs)
- J_{α} is what is known as the Jastrow factor, represented as a neural network.
- $f_{\mu,\alpha}$ are the backflow factors which scale the Hartree-Fock functions: another neural network.
- $\gamma(r)$ enforces electron-electron cusp conditions.

$$\Psi_{\alpha}(r) = e^{\gamma(r) + J_{\alpha}(r)} \sum_{p} c_{p} \det(\tilde{\varphi}_{\mu_{p}}^{\dagger}(r)) \det(\tilde{\varphi}_{\mu_{p}}^{\downarrow}(r))$$
$$\tilde{\varphi}_{\mu}(r)_{i} = \varphi_{\mu}(r_{i}) f_{\mu,\alpha}(r)_{i}$$

- φ are Hartree-Fock functions (physically derived single-electron wavefunctions, treated as inputs)
- J_{α} is what is known as the Jastrow factor, represented as a neural network.
- $f_{\mu,\alpha}$ are the backflow factors which scale the Hartree-Fock functions: another neural network.
- $\gamma(r)$ enforces electron-electron cusp conditions.
- Slater determinants are used (split by spin up/down of particles).

Modification to PauliNet: Vandermonde Determinants

- We replace the Slater determinants in the PauliNet ansatz with Vandermonde determinants.
- We define $\tilde{\varphi}(r_j) = \prod_{i=1}^N \tilde{\varphi}_i(r_j)$ and then take a Vandermonde determinant of $(\tilde{\varphi}(r_1), \tilde{\varphi}(r_2), \cdots)$

Modification to PauliNet: Vandermonde Determinants

- We replace the Slater determinants in the PauliNet ansatz with Vandermonde determinants.
- We define $\tilde{\varphi}(r_j) = \prod_{i=1}^N \tilde{\varphi}_i(r_j)$ and then take a Vandermonde determinant of $(\tilde{\varphi}(r_1), \tilde{\varphi}(r_2), \cdots)$
- Certain boundary conditions are preserved by Slater determinant but lost when moving to the Vandermonde determinant. We premultiply by a wavefunction applied to each electron $\varphi(r_1)\varphi(r_2)\cdots$ to preserve this property.

PAULINET: SLATER V VANDERMONDE

PAULINET: SLATER V VANDERMONDE

OUTLINE FOR SECTION 5

- 1 AMD and Quantum Monte Carlo
- 2 Variational Quantum Monte Carlo: Introduction
- 3 N electron systems
 - The need for antisymmetry
 - Comparison of Slater and Vandermonde determinants
- 4 Deep-learning-based ansatz: PauliNet
 - Description of PauliNet
 - Proposed improvement: Vandermonde with PauliNet
- 5 Conclusions and new directions

The Vandermonde determinant

• We find that the Vandermonde determinant is a viable way to enforce antisymmetry, as opposed to the classic Slater determinant.

The Vandermonde determinant

- We find that the Vandermonde determinant is a viable way to enforce antisymmetry, as opposed to the classic Slater determinant.
- On our simple systems, a Vandermonde-based ansatz can sometimes compete with a Slater determinant.

THE VANDERMONDE DETERMINANT

- We find that the Vandermonde determinant is a viable way to enforce antisymmetry, as opposed to the classic Slater determinant.
- On our simple systems, a Vandermonde-based ansatz can sometimes compete with a Slater determinant.
- When integrated with PauliNet, the Vandermonde determinant trained successfully but did not surpass a simple baseline in converged energy.
 - ▶ One possible avenue for improvement might be a set of basis wavefunctions more suited to the Vandermonde determinant, or different methods for enforcing boundary conditions.

The Vandermonde determinant

- We find that the Vandermonde determinant is a viable way to enforce antisymmetry, as opposed to the classic Slater determinant.
- On our simple systems, a Vandermonde-based ansatz can sometimes compete with a Slater determinant.
- When integrated with PauliNet, the Vandermonde determinant trained successfully but did not surpass a simple baseline in converged energy.
 - One possible avenue for improvement might be a set of basis wavefunctions more suited to the Vandermonde determinant, or different methods for enforcing boundary conditions.
- While the use of neural networks in VMC can result in highly accurate solutions, further new approaches are needed to best balance computational cost with accuracy.

CONCLUSIONS AND NEW DIRECTIONS

 Machine learning can definitely be employed in the design of ansatz for Variational Monte Carlo. There is a real possibility these techniques will be adopted into HPC packages like QMCPACK.

CONCLUSIONS AND NEW DIRECTIONS

- Machine learning can definitely be employed in the design of ansatz for Variational Monte Carlo. There is a real possibility these techniques will be adopted into HPC packages like QMCPACK.
- In principle a neural network can learn any arbitrary function. But even with the most complex and flexible deep learning ansatz, enforcement of physical properties by construction seems to be quite valuable.
CONCLUSIONS AND NEW DIRECTIONS

- Machine learning can definitely be employed in the design of ansatz for Variational Monte Carlo. There is a real possibility these techniques will be adopted into HPC packages like QMCPACK.
- In principle a neural network can learn any arbitrary function. But even with the most complex and flexible deep learning ansatz, enforcement of physical properties by construction seems to be quite valuable.
- We have focused only on the ground state and the time-independent Schrödinger equation. Considering whether VMC techniques could be used to solve for higher excited states, or a time-evolving version of the equation, would be interesting.

Acknowledgments

- IPAM
 - ▶ Dr. Susana Serna (Dir of RIPS, IPAM)
 - ▶ Dr. Christian Ratsch (Deputy Director, IPAM)
 - ▶ Dr. Dimitri Shlyakhtenko (Dir of IPAM)
- IPAM staff
 - ▶ Neli Petrosyan
 - ▶ Parama Sigurdsen
 - ► Kayleigh Steele
 - ▶ David Medina
 - ▶ Jim Kimmick
- AMD
 - ▶ Dr. Nicholas Malaya (Industry Mentor)

QUESTIONS?