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AMD and Frontier (exascale computing)

Epyc CPUs

Radeon GPUs

In 2021: Frontier will become the largest supercomputer ever
constructed.
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QMCPACK

Uses Quantum Monte Carlo methods to solve the
Schrödinger equation ĤΨ = EΨ.
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Significance of Quantum Monte Carlo

Wavefunctions describe molecular, atomic, and subatomic
systems.

For a molecule with N electrons, the wavefunction takes the
form Ψ(r1, r2, . . . , rN ).

I ri is the position of electron i in three-dimensional space.

I Ψ is a function of 3N variables.

I |Ψ(r1, r2, . . . , rN )|2 gives the probability that the electrons
are in a given configuration r1, r2, . . . , rN .

Knowing the configuration of electrons can help infer chemical
properties of molecules and materials.
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The Pauli exclusion principle

The Pauli exclusion principle is an empirical law that states
that two interacting fermions (electrons are fermions) cannot
occupy the same quantum state.

In mathematical terms, the wavefunction must obey
antisymmetry. This means that exchanging two particles
must flip only the sign of the wavefunction:

Ψ(· · · , ri, · · · , rj , · · · ) = −Ψ(· · · , rj , · · · , ri, · · · )
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Example: two fermions in a 1-dimensional
box

Wavefunction Ψ(x1, x2)
x1, x2 are positions of
particles.
|Ψ(x1, x2)|2 is probability

Ψ must be antisymmetric:
Ψ(x1, x2) = −Ψ(x2, x1).
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Approximating Wavefunctions

Choose a class of wavefunctions Ψα(r) parameterized by α.

Optimize alpha to find the ground state wavefunction.

8 38



Approximating Wavefunctions

Choose a class of wavefunctions Ψα(r) parameterized by α.

Optimize alpha to find the ground state wavefunction.

8 38



Approximating Wavefunctions

Choose a class of wavefunctions Ψα(r) parameterized by α.

Optimize alpha to find the ground state wavefunction.

8 38



Challenge of applying QMC

Need a well informed “guess” (ansatz) of the function Ψα(r) which
best describes the system.

Solution 1: Use your knowledge of physics to design the
ansatz.

Solution 2 Use neural networks as function approximators.

Many methods e.g. PauliNet do both.
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Our focus

We aim to investigate the feasibility of deep learning to
produce new and powerful forms of ansatz.

Need to enforce a property known antisymmetry due to the
Pauli exclusion principle.

The traditional method for enforcing antisymmetry uses a
technique known as the Slater determinant, which is a
major part of the computational cost of ansatz that use it.

We focus on a different technique for enforcing antisymmetry
known as the Vandermonde determinant.
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Slater determinants

Ψ(r1, · · · , rN ) =

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕN (r1)
ϕ1(r2) ϕ2(r2) · · · ϕN (r2)

...
...

. . .
...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣

Computational cost: O(N3)
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Vandermonde determinants

Ψ(r1, · · · , rN ) =

∣∣∣∣∣∣∣∣∣
1 ϕ(r1)1 ϕ(r1)2 · · · ϕ(r1)N−1

1 ϕ(r2)1 ϕ(r2)2 · · · ϕ(r2)N−1

...
...

...
. . .

...
1 ϕ(rN )1 ϕ(rN )2 · · · ϕ(rN )N−1

∣∣∣∣∣∣∣∣∣

=
∏
i<j

(ϕ(ri)− ϕ(rj))

Computational cost: O(N2)
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The ground state energy of the system

Variational Monte Carlo is used to find the ground state
energy of the system.

All wavefunctions φ other than the true ground state Ψ0 have
higher energy: EΨ0 [E] ≤ Eφ[E].

The system’s properties are defined by an operator H known
as the Hamiltonian. Given H and the wavefunction Ψ, the
expected energy of the system is:

E[E] =

∫
Ψ∗α(~r)HΨα(~r)dV∫
|Ψα(~r)|2dV

We want to minimize this quantity.
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QMC

In general, the expected energy cannot be computed analytically.
An approximation is

E[E] ≈ 1

N

N∑
i=1

EL(xi)

EL is the local energy associated with a particle in a single,
specific configuration.

{xi} is a set of random samples from |Ψα(~r)|2. These are
drawn using Markov-chain Monte Carlo (MCMC).
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Sampling with Markov-Chain Monte Carlo

Using the two particles in a box ansatz as an example. We set
(α1, α2) = (1.95, 0.95).
Ψα1,α2(x1, x2) = (1− x2α1

1 )(1− x2α2
2 )x2 − (1− x2α1

2 )(1− x2α2
1 )x1

Sampling with MCMC 4500
times.

Actual |Ψα1,α2(x1, x2)|2.
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Sampling with Markov-Chain Monte Carlo

Using the Two particles in a box Ansatz as an example. We set
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1 )(1− x2α2
2 )x2 − (1− x2α1

2 )(1− x2α2
1 )x1

Sampling with MCMC 10000
times.

Actual |Ψα1,α2(x1, x2)|2.

17 38



Gradient descent on the approximated
energy

GD to approximate ground state energy of the two fermions in a box
model. E0 = 6.168 in our units. Converges to α1 = 0.876 and α2 = 0.52.
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Ansatz with optimal alphas vs Exact
solution

Using α1 = 0.876 and α2 = 0.52
with our ansatz.

Exact solution.
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N-electron systems

We focus on the study of N -electron systems: that is, atoms and
molecules with electrons surrounding the nucleus. The Hamiltonian
(which defines the energy) of systems like is:

N∑
i=1

(− ~2

2m
∇2
i ) + Ve−n(~r1, ..., ~rN ) + Ve−e(~r1, ..., ~rN )

Kinetic energy of electrons: defined in terms of Laplacian of
the wavefunction.

Electron-nucleus energy

Electron-electron energy
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Pauli exclusion principle

Recall the: Pauli exclusion principle: Two identical fermions
cannot occupy the same state.

|Ψ(· · · , ri, · · · , rj , · · · )|2 = |Ψ(· · · , rj , · · · , ri, · · · )|2.

Ψ(· · · , ri, · · · , rj , · · · ) = −Ψ(· · · , rj , · · · , ri, · · · )
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A first attempt at an ansatz

Suppose we have single-electron basis functions ϕj . A first attempt
at an ansatz might be:

Ψ(r1, · · · , rN ) =
∏
i

ϕi(ri)

This is known as the Hartree product ansatz, but it does not
enforce antisymmetry when ri, rj switched.

23 38
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The Slater determinant

One can extend the idea of the Hartree product ansatz as follows:

Ψ(r1, · · · , rN ) =

∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) · · · ϕN (r1)
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...
...

. . .
...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣

Because this is a determinant, permuting ri, rj swaps rows and
therefore swaps sign – antisymmetry is enforced perfectly.
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The Vandermonde determinant

Suppose we have some basis function ϕ applied to each electron
configuration. The Vandermonde determinant is defined as:

detV =

∣∣∣∣∣∣∣∣∣
1 ϕ(r1)1 ϕ(r1)2 · · · ϕ(r1)N−1

1 ϕ(r2)1 ϕ(r2)2 · · · ϕ(r2)N−1

...
...

...
. . .

...
1 ϕ(rN )1 ϕ(rN )2 · · · ϕ(rN )N−1

∣∣∣∣∣∣∣∣∣
This is a determinant: swapping ri will switch sign, can enforce
antisymmetry.

But it can be computed using a more efficient expression.

detV =
∏
i<j

(ϕ(ri)− ϕ(rj))
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Helium (2 electrons)
Slater vs Vandermonde

Ψslat(r1, r2) = e−α1r1e−α2r2 − e−α1r2e−α2r1

ΨV an(r1, r2) = e−α1(r1+r2)(e−α2r1 − e−α2r2)
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Two particles in a box:
Vandermonde and Slater

Convergence plot for the two-fermions-in-a-box system near the
ground state energy
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PauliNet

It’s quite natural to think of VMC as machine learning – we
are minimizing a nonlinear function Ψα by gradient descent.

PauliNet is one of a few recent deep learning architectures for
approximation of wavefunctions.

The structure of the ansatz has a widely-used design – what is
known as a “Slater-Jastrow-Backflow” ansatz. (QMCPACK
uses a similar form.)

But parts of this are replaced with flexible neural networks.
The weights of these networks are what varies to minimize the
energy.

29 38
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PauliNet: the ansatz itself

For electrons with coordinates ri, the ansatz is as follows:

Ψα(r) = eγ(r)+Jα(r)
∑
p

cpdet(ϕ̃↑µp(r))det(ϕ̃
↓
µp(r))

ϕ̃µ(r)i = ϕµ(ri)fµ,α(r)i

ϕ are Hartree-Fock functions (physically derived
single-electron wavefunctions, treated as inputs)

Jα is what is known as the Jastrow factor, represented as a
neural network.

fµ,α are the backflow factors which scale the Hartree-Fock
functions: another neural network.

γ(r) enforces electron-electron cusp conditions.

Slater determinants are used (split by spin up/down of
particles).

30 38
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Modification to PauliNet: Vandermonde
Determinants

We replace the Slater determinants in the PauliNet ansatz
with Vandermonde determinants.

We define ϕ̃(rj) =
∏N
i=1 ϕ̃i(rj) and then take a Vandermonde

determinant of (ϕ̃(r1), ϕ̃(r2), · · · )

Certain boundary conditions are preserved by Slater
determinant but lost when moving to the Vandermonde
determinant. We premultiply by a wavefunction applied to
each electron ϕ(r1)ϕ(r2) · · · to preserve this property.
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Certain boundary conditions are preserved by Slater
determinant but lost when moving to the Vandermonde
determinant. We premultiply by a wavefunction applied to
each electron ϕ(r1)ϕ(r2) · · · to preserve this property.
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PauliNet: Slater v Vandermonde
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PauliNet: Slater v Vandermonde
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The Vandermonde determinant

We find that the Vandermonde determinant is a viable way to
enforce antisymmetry, as opposed to the classic Slater
determinant.

On our simple systems, a Vandermonde-based ansatz can
sometimes compete with a Slater determinant.

When integrated with PauliNet, the Vandermonde
determinant trained successfully but did not surpass a simple
baseline in converged energy.

I One possible avenue for improvement might be a set of basis
wavefunctions more suited to the Vandermonde determinant,
or different methods for enforcing boundary conditions.

While the use of neural networks in VMC can result in highly
accurate solutions, further new approaches are needed to best
balance computational cost with accuracy.

35 38



The Vandermonde determinant

We find that the Vandermonde determinant is a viable way to
enforce antisymmetry, as opposed to the classic Slater
determinant.

On our simple systems, a Vandermonde-based ansatz can
sometimes compete with a Slater determinant.

When integrated with PauliNet, the Vandermonde
determinant trained successfully but did not surpass a simple
baseline in converged energy.

I One possible avenue for improvement might be a set of basis
wavefunctions more suited to the Vandermonde determinant,
or different methods for enforcing boundary conditions.

While the use of neural networks in VMC can result in highly
accurate solutions, further new approaches are needed to best
balance computational cost with accuracy.

35 38



The Vandermonde determinant

We find that the Vandermonde determinant is a viable way to
enforce antisymmetry, as opposed to the classic Slater
determinant.

On our simple systems, a Vandermonde-based ansatz can
sometimes compete with a Slater determinant.

When integrated with PauliNet, the Vandermonde
determinant trained successfully but did not surpass a simple
baseline in converged energy.

I One possible avenue for improvement might be a set of basis
wavefunctions more suited to the Vandermonde determinant,
or different methods for enforcing boundary conditions.

While the use of neural networks in VMC can result in highly
accurate solutions, further new approaches are needed to best
balance computational cost with accuracy.

35 38



The Vandermonde determinant

We find that the Vandermonde determinant is a viable way to
enforce antisymmetry, as opposed to the classic Slater
determinant.

On our simple systems, a Vandermonde-based ansatz can
sometimes compete with a Slater determinant.

When integrated with PauliNet, the Vandermonde
determinant trained successfully but did not surpass a simple
baseline in converged energy.

I One possible avenue for improvement might be a set of basis
wavefunctions more suited to the Vandermonde determinant,
or different methods for enforcing boundary conditions.

While the use of neural networks in VMC can result in highly
accurate solutions, further new approaches are needed to best
balance computational cost with accuracy.

35 38



Conclusions and new directions

Machine learning can definitely be employed in the design of
ansatz for Variational Monte Carlo. There is a real possibility
these techniques will be adopted into HPC packages like
QMCPACK.

In principle a neural network can learn any arbitrary function.
But even with the most complex and flexible deep learning
ansatz, enforcement of physical properties by construction
seems to be quite valuable.

We have focused only on the ground state and the
time-independent Schrödinger equation. Considering whether
VMC techniques could be used to solve for higher excited
states, or a time-evolving version of the equation, would be
interesting.
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