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1 Work by Jarek et all
In recent times significant attention has been given to a family of multipartite states named spectrum
broadcast structures (SBS) [27] [28] [29] [52]. Since its genesis, the theory of SBS has been used as
a tool in the discipline of Quantum Foundations; particularly in the theories of Decoherence and
Quantum Darwinism [39][47][51][31]. Recently Quantum Darwinism and SBS theory have been
shown to be equivalent under certain technical assumptions[32]. Motivating the theory of Quantum
Darwinism and the theory of SBS is the question of objectivity in the quantum world. To avoid
philosophical contention [27] [28][29], provides a definition of objectivity motivated by properties of
classical dynamical systems. The multipartite quantum mechanical state satisfying such properties
is called a Spectrum Broadcast Structure. The definition of objectivity proposed in [27] is:

Definition 1. A state of the system S exists objectively if many observers can find out the state of
S independently, and without perturbing it.

The way to introduce objectivity in quantum systems, proposed by Korbicz and his collaborators
is the SBS, as defined below.

Definition 2. SBS: A Spectrum Broadcast Structure is a joint state of a central system S and an
environment E, consisting of sub-environments E1, E2, ..., EN :

ρ̂ =
∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i (1)

where {|i⟩}i is some basis in the system’s space, pi are probabilities, and all states ρ̂E
k

i are perfectly
distinguishable in the following sense:

F 2(ρ̂Ek

i , ρ̂E
k

j

)
= 0 (2)

for all i ̸= j and for all k = 1, ..., N . Where F (..., ...) is the quantum fidelity defined as F
(
ρ̂, σ̂

)
:=∥∥√

ρ̂
√

σ̂
∥∥

1

In [27] it is proven that SBS satisfies the desired definition of objectivity and that it is the only
such structure that satisfies such a definition. The challenge then becomes showing that typical
multipartite states converge to SBS in the large time limit [29]. The principal models studied in
SBS literature [27][28][29] are of the quantum-measurement limit type, meaning SBS that arise from
dynamics generated by Hamiltonians in which the interaction term between the system S and the
environment E greatly dominates, i.e. Ĥtot ≈ ĤI (tot means total and I indicates "interaction
terms").

We consider a quantum system interacting with N macroscopic environments. We assume that
the joint initial state has the product form:

ρ̂ = ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0 (3)

In the sate (3) we write the subscript 0 in Ek0 in order to emphasize that this is the initial state
of the kth environment Ek, similarly, we use the subscript S0 to highlight the initial state of the
system.

We assume the quantum-measurement limit, Ĥtot ≈ ĤI . Hence

ĤI = γf(X̂) ⊗
N∑
k=1

gk(B̂k) (4)

where the operators X̂ and B̂k above are the position operator and some arbitrary observable
respectively; each acting on its respective space, i.e. all of the B̂k act on different Hilbert spaces.
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The functions f(x) and gk(x) are only assumed to be continuous. A Hamiltonian of the form (4) is
said to be of the von Neumann type [48]. The corresponding time evolution operator is therefore

Ût = e−itγf(X̂)⊗
∑N

k=1
gk(B̂k). (5)

We evolve our total initial state using the evolution operator (5).

ρ̂t =
(
e−itγf(X̂)⊗

∑N

k=1
gk(B̂k)

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

(
eitγf(X̂)⊗

∑N

k=1
gk(B̂k)

)
. (6)

To study the state of the subsystem formed by the system S and the first NE environments,
we take the partial trace of the time-evolved density operator over the remaining ME := N − NE
environments.

Claim 1. Partial trace:

TrENE +1,ENE +2,...,EN

{
ρ̂t
}

= UNE ,t

(
Et
(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

)
(7)

using the notation
TrA,B

{
...
}

:= TrA
{
TrB

{
...
}}
. (8)

Where
Un,t

(
Â
)

:= e−itγf(X̂)⊗Ŝn
(
Â
)
eitγf(X̂)⊗Ŝn (9)

Ŝn :=
n∑
k=1

gk(B̂k)

and
EME
t {σ̂} :=

∫ ∫
⟨x|σ̂|y⟩ΓME

(t, x, y)|x⟩⟨y|dxdy. (10)

where

ΓME
(t, x, y) :=

N∏
k=NE+1

Trk

{(
e−itγf(x)gk(B̂k))ρ̂Ek

0
(
eitγf(y)gk(B̂k))} (11)

ME = N −NE, the number of traces being taken in equation (11).

Proof.
TrENE +1,ENE +2,...,EN

{
ρ̂t
}

= (12)

TrENE +1,ENE +2,...,EN

{(
e−itγf(X̂)⊗

∑N

k=1
gk(B̂k)

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0
(
eitγf(X̂)⊗

∑N

k=1
gk(B̂k)

)}
= (13)

UNE ,t

(
TrENE +1,ENE +2,...,EN

{(
e

−itγf(X̂)⊗
∑N

k=NE +1
gk(B̂k))

ρ̂S0⊗
N⊗

k=NE+1
ρ̂E

k
0
(
e
itγf(X̂)⊗

∑N

k=NE +1
gk(B̂k))} NE⊗

k=1
ρ̂E

k
0

)
(14)

Let us now use the generalized eigenvectors of X̂ in order to write ρ̂S0 =
∫ ∫

KS(x, y)|x⟩⟨y|dxdy
where KS(x, y) = ⟨x|ρ̂|y⟩. Using the latter,

e
−itγf(X̂)⊗

∑N

k=NE +1
gk(B̂k)

ρ̂S0 ⊗
N⊗

k=NE+1
ρ̂E

k
0 e
itγf(X̂)⊗

∑N

k=NE +1
gk(B̂k) = (15)

∫ ∫
KS(x, y)|x⟩⟨y|

(
e

−itγf(x)
∑N

k=NE +1
gk(B̂k)

(
N⊗

k=NE+1
ρ̂E

k
0

)
e
itγf(y)

∑N

k=NE +1
gk(B̂k)

)
dxdy = (16)
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∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itγf(x)gk(B̂k)ρ̂E
k
0 eitγf(y)gk(B̂k)dxdy (17)

Furthermore

TrENE +1,ENE +2,...,EN

{∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itγf(x)gk(B̂k)ρ̂E
k
0 eitγf(y)gk(B̂k)dxdy

}
= (18)

∫ ∫
KS(x, y)|x⟩⟨y|TrENE +1,ENE +2,...,EN

{ N⊗
k=NE+1

e−itγf(x)gk(B̂k)ρ̂E
k
0 eitγf(y)gk(B̂k)

}
dxdy = (19)

∫ ∫
KS(x, y)ΓME

(t, x, y)|x⟩⟨y|dxdy = EME
t

(
ρ̂S0

)
(20)

Finally, using (14) and (20) we have

(14) = UNE ,t

(
EME
t

(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

)
(21)

To simplify the notation, we shall forgo all but two macroscopic environments, i.e.N = 2, Nf =
m = 1. After partial tracing over one of the environments we obtain the following density operator.

ρ̂t := U1,t
(
E 1
t {ρ̂S0} ⊗ ρ̂E

1
0
)
. (22)

The map E 1
t is a decoherence quantum map and U1,t is a unitary map obtained from the Hamiltonian

(4) for the case N = 2. In [29] an SBS state associated with (22) is defined for every value of t > 0;
it is shown there that (22) converges to this state (in the trace norm, see below), as t goes to ∞. Its
form may be deduced from (22) as follows. We rewrite (22) as:

ρ̂t = U1,t
(
E 1
t {ρ̂S0} ⊗ ρ̂E

1
0
)

=
dS∑
i,j=1

σi,jγ
2
i,j(t)|i⟩⟨j| ⊗ ρ̂E

1
t

xi,xj
(23)

where {|i⟩}ds
i=1 are the eigenvectors of X̂, with corresponding eigenvalues {xi}dS

i=1 (X̂ in [29] has
discrete spectrum). Where we have used the definitions

ρ̂E
k
t

x,y := e−itγf(x)gk(B̂k)ρ̂E
k
0 eitf(y)gk(B̂k) (k = 1, 2) (24)

σi,j := ⟨i|ρ̂S0 |i⟩ (25)

γki,j(t) := Tr
{

ρ̂E
k
t

xi,xj

}
(26)

ρ̂E
k
t

x := e−itγf(x)gk(B̂k)ρ̂E
k
0 eitf(x)gk(B̂k) (k = 1, 2). (27)

The SBS approximating (22) is defined by restricting the sum on the RHS of (23) to the diagonal
terms—the terms with i = j. We will label it as follows.

ρ̂diag,t :=
dS∑
i=1

σiγ
2
i (t)|i⟩⟨i| ⊗ ρ̂E

1
t

xi
(28)

Notice that for i = j, γi,j(t) = 1, so

ρ̂diag,t =
dS∑
i=1

σi|i⟩⟨i| ⊗ ρ̂E
1
t

xi
. (29)
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The next step is to choose for every t a projection-valued-measure (PVM) acting on the space
HS ⊗ HE1 ( For the case considered in [29], dim(HS) = dS < ∞ and dim(HE1) = dE1 < ∞). To
define such a PVM, the authors use the eigenbasis of the operator X̂: the elements of the PVM are
of the form

∣∣i〉〈i∣∣⊗ P̂E1
t

j where the
{∣∣i〉〈i∣∣}dS

i=1 and
{

P̂E1
t

j

}dS

j=1 ∪
{
I−
∑dS

i=1 P̂E1
t

i

}
resolve the identity

operators in B
(
HS

)
and B

(
HE1

)
respectively, so that, in particular,

{
P̂E1

t
j

}dS

j=1 ∪
{
I−
∑dS

i=1 P̂E1
t

i

}
is

a PVM in the environment’s Hilbert space. The latter PVM is then used to approximate the (22)
by an SBS state:

ρ̂SBS,t := 1
N

dS∑
j=1

(∣∣j〉〈j∣∣⊗ P
E1

t
j

)
ρ̂diag,t

(∣∣j〉〈j∣∣⊗ P̂E1
t

j

)
= (30)

dS∑
i=1

σ̃i|i⟩⟨i| ⊗

(
P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

)
. (31)

Here N is a normalizing constant and σ̃i := σi

N . The operator (31) is indeed an SBS state. If
(22) converges to an object with the form (31) as t → ∞, we say that (22) is asymptotically SBS.
Convergence is meant here in the sense of trace distance. Namely, one would like to show that

1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 → 0 as t → ∞ (32)

where for each t the minimization is taken over all projective-valued-measures
{

P̂E1
t

i }dS
i=1 ∪ {I −∑dS

i=1 P̂E1
t

i }. An attempt is made in [29] to prove (32) but the argument provided there is incomplete.
In what follows we discuss the bounds presented in [29], as well as propose and prove an alternative
bound for the trace distance in (32).

In the paper [29], a bound is conjectured for the trace distance in (32). In the case of two
environments (one of which is traced over), the bound becomes:

1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ Γ(t) +
∑
i

∑
j;j ̸=i

√
σiσjF

(
ρ̂E

1
t

xi
, ρ̂E

1
t

xj

)
(33)

where Γ(t) :=
∑
i ̸=j |σi,jγ2

i,j(t)|. In general, for the case where M environmental degrees of freedom
have been traced out and NE remain, the bound looks as follows.

1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ Γ(t) +
∑
i

∑
j;j ̸=i

√
σiσj

NE∑
k=1

F
(
ρ̂E

k
t

xi
, ρ̂E

k
t

xj

)
(34)

where now, Γ(t) =
∑
i ̸=j |σi,j |

∏M+N
k=N+1 |γki,j(t)|, where again γki,j(t) = Tr

[
ρ̂E

k
t

xi,xj

]
. If true, this result

would allow to estimate the minimum on the LHS, using the asymptotic properties of Γ(t) and the
fidelity terms in (34). As it is currently not known to be true, we will not be using it.

1.1 A new bound for the trace distance of a multipartite state and an
approximating SBS state

In what follows we use an unnormalized version of (30): ρ̂PSBS,t := N ρ̂SBS,t. This state is just the
state (30) without the normalization factor 1

N . In practice it is easier to bound
∥∥ρ̂t − ρ̂PSBS,t

∥∥
1

and then utilize Lemma 1, stated below, to bound
∥∥ρ̂t − ρ̂SBS,t

∥∥
1.

Lemma 1. ∥ρ̂ − ησ̂∥1 ≤ L implies ∥ρ̂ − σ̂∥ ≤ 2L for constants L ≥ 0 and η ∈ [0, 1]

Proof. Using reverse triangle inequality we see that

L ≥ ∥ρ̂ − ησ̂∥1 ≥
∣∣∥ρ̂∥1 − ∥ησ̂∥1

∣∣ = ∥ρ̂∥1 − ∥ησ̂∥1 = 1 − η (35)
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furthermore
∥ρ̂ − σ̂∥1 = ∥ρ̂ − ησ̂ + ησ̂ − σ̂∥1 ≤ ∥ρ̂ − ησ̂∥1 + ∥ησ̂ − σ̂∥1 ≤ (36)

L+ (1 − η)∥σ̂∥1 = L+ (1 − η) ≤ L+ L = 2L (37)

We now prove some preliminary inequalities.∥∥ρ̂t − ρ̂PSBS,t
∥∥

1 = (38)

∥∥∥∥ dS∑
i,j=1

σi,jγ
2
i,j(t)|i⟩⟨j| ⊗ ρ̂E

1
t

xi,xj
−

dS∑
i=1

σi|i⟩⟨i| ⊗ P̂E1
t

i ρ̂E
1
t

xi
P̂E1

t
i

∥∥∥∥
1

≤ (39)

∥∥∥∥ dS∑
i=1

σi|i⟩⟨i| ⊗ ρ̂E
1
t

xi
−

dS∑
i=1

σi|i⟩⟨i| ⊗ P̂E1
t

i ρ̂E
1
t

xi
P̂E1

t
i

∥∥∥∥
1

+
∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jγ
2
i,j(t)|i⟩⟨j| ⊗ ρ̂E

1
t

xi,xj

∥∥∥∥
1

≤ (40)

dS∑
i=1

∥∥∥∥σi|i⟩⟨i| ⊗ ρ̂E
1
t

xi
− σi|i⟩⟨i| ⊗ P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

+
∥∥∥∥∑

i

dS∑
j ̸=i

σi,jγi,j(t)|i⟩⟨j| ⊗ ρ̂E
1
t

xi,xj

∥∥∥∥
1

= (41)

dS∑
i=1

σi

∥∥∥∥|i⟩⟨i| ⊗
(

ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

)∥∥∥∥
1

+
∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jγ
2
i,j(t)|i⟩⟨j| ⊗ ρ̂E

1
t

xi,xj

∥∥∥∥
1

= (42)

dS∑
i=1

σi

∥∥∥∥ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

+
∑
i

dS∑
j ̸=i

|σi,jγ2
i,j(t)| (43)

We may therefore conclude that
1
2 min
PVM

∥∥ρ̂t − ρ̂SBS,t
∥∥

1 ≤ (44)

min
PVM

( dS∑
i=1

σi

∥∥∥∥ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

)
+
∑
i

dS∑
j;j ̸=i

|σi,jγ2
i,j(t)| (45)

The second term in the sum (45) is the decoherence term which is independent of the choice of
the PVM minimized over. The decoherence term is simple to study provided that we are able to
compute the trace defining γi,j(t). The first term in (45) involves a minimization over all PVM
for each value of t. Rather than attempting to solve the minimization problem exactly, below we
estimate the first term in (45) for a particular (judiciously chosen) PVM, obtaining an upper bound
on the true minimum.

1.1.1 Bounding the variational term

Switching notation for a bit. Consider a mixed state of the form
∑N
i=1 piρ̂i, where

∑N
i=1 pi = 1 and

the ρ̂i are pure states in a Hilbert space of dimension greater than N , i.e. one-dimensional projections
|ψi⟩⟨ψi|, where {|ψi⟩}Ni=1 are normalized vectors. Assuming that |ψi⟩ are linearly independent, we
may use the well-known Gram-Schmidt procedure to define an associated orthonormal set.

Definition 3. Gram-Schmidt Procedure: Assume that the set {|ψ⟩i}Ni=1, of vectors in some vector
space V , is a linearly independent set. Then the following construction yields an orthonormal set.

|ϕ1⟩ = |ψ1⟩ (46)

|ϕ2⟩ = 1
α2

{
|ψ2⟩ − ⟨ϕ1|ψ2⟩|ϕ1⟩

}
(47)

...
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|ϕN ⟩ = 1
αN

{
|ψN ⟩ −

N−1∑
k=1

⟨ϕk|ψN ⟩|ϕk⟩
}

(48)

Here αi := ∥|ψi⟩−
∑i−1
k=1⟨ϕk|ψi⟩|ϕk⟩∥ =

√
1 −

∑i−1
k=1 |⟨ϕk|ψi⟩|2 for i > 1 and α1 = 1 are the respective

normalization constants. We have Span
{

{|ψi⟩}Ni=1

}
= Span

{
{|ϕi⟩}Ni=1

}
.

The orthonormal set {|ϕi⟩}Ni=1 may be used for the construction of a PVM , namely

{
|ϕi⟩⟨ϕi|

}N
i=1 ∪

{
I −

N∑
i=1

|ϕi⟩⟨ϕi|
}
. (49)

We will use it to estimate minPVM
∑N
i=1 pi

∥∥ρ̂i − P̂iρ̂iP̂i

∥∥
1:

min
PVM

N∑
i=1

pi
∥∥ρ̂i − P̂iρ̂iP̂i

∥∥
1 ≤

N∑
i=1

pi
∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi

∥∥
1. (50)

Lemma 2. Let ρ̂i and |ϕi⟩ be defined as above; also let i > 1, then

∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥

1 ≤ 2
i−1∑
k=1

|⟨ϕk|ψi⟩|

Proof. ∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥

1 =
∥∥|ψi⟩⟨ψi|ρ̂i|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi

∥∥
1 =∥∥∥(|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|

)
ρ̂i|ψi⟩⟨ψi| + |ϕi⟩⟨ϕi|ρ̂i

(
|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|

)∥∥∥
1

≤∥∥∥(|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|
)

ρ̂i|ψi⟩⟨ψi|
∥∥∥

1
+
∥∥∥|ϕi⟩⟨ϕi|ρ̂i

(
|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|

)∥∥∥
1

≤∥∥∥|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|
∥∥∥

1

∥∥∥ρ̂i|ψi⟩⟨ψi|
∥∥∥

1
+
∥∥∥|ϕi⟩⟨ϕi|ρ̂i

∥∥∥
1

∥∥∥|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|
∥∥∥

1
=

∥∥∥|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|
∥∥∥

1

(∥∥∥ρ̂i|ψi⟩⟨ψi|
∥∥∥

1
+
∥∥∥|ϕi⟩⟨ϕi|ρ̂i

∥∥∥
1

)
≤

∥∥∥|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|
∥∥∥

1

(∥∥ρ̂i
∥∥

1

∥∥∥|ψi⟩⟨ψi|
∥∥∥

1
+
∥∥∥|ϕi⟩⟨ϕi|

∥∥∥
1

∥∥ρ̂i
∥∥

1

)
≤

2
∥∥∥|ψi⟩⟨ψi| − |ϕi⟩⟨ϕi|

∥∥∥
1

= 2
√

1 − |⟨ψi|ϕi⟩|2 =

2

√√√√1 −

∣∣∣∣∣ 1
αi

(
1 −

i−1∑
k=1

|⟨ϕk|ψi⟩|2
)∣∣∣∣∣

2

= 2

√√√√√√1 −

∣∣∣∣∣
(

1 −
∑i−1
k=1 |⟨ϕk|ψi⟩|2

)
√(

1 −
∑i−1
k=1 |⟨ϕk|ψi⟩|2

)
∣∣∣∣∣
2

= 2

√√√√1 − 1 +
i−1∑
k=1

|⟨ϕk|ψi⟩|2 = 2

√√√√i−1∑
k=1

|⟨ϕk|ψi⟩|2 ≤ 2
i−1∑
k=1

|⟨ϕk|ψi⟩|

where we have used the fact that
∑i−1
k=1 |⟨ϕk|ψi⟩|2 ≤ 1 due to Bessel’s inequality in the last line.

The term
∑i−1
k=1 |⟨ϕk|ψi⟩| may be understood by analyzing it through the scope of its related

determinant. We present this result as a lemma.
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Lemma 3.

|ϕj⟩ = 1√
Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψj⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψj⟩

...
...

. . .
...

⟨ψj−1|ψ1⟩ ⟨ψj−1|ψ2⟩ . . . ⟨ψj−1|ψj⟩
|ψ1⟩ |ψ2⟩ . . . |ψj⟩

∣∣∣∣∣∣∣∣∣∣∣
where

Dj :=

∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψj⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψj⟩

...
...

. . .
...

⟨ψj |ψ1⟩ ⟨ψj |ψ2⟩ . . . ⟨ψj |ψj⟩

∣∣∣∣∣∣∣∣∣
defining |ϕ1⟩ := |ψ1⟩, D0 := 1 and D1 = 1 in order to make sense of the case j = 1 and k = 0, 1 for
|ϕi⟩ and Dk respectively.

In determinant form, ⟨ψi|ϕk⟩ may now be written as follows.

⟨ψi|ϕk⟩ = 1√
Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
... . . . ...

⟨ψk−1|ψ1⟩ ⟨ψk−1|ψ2⟩ . . . ⟨ψk−1|ψk⟩
⟨ψi|ψ1⟩ ⟨ψi|ψ2⟩ . . . ⟨ψi|ψk⟩

∣∣∣∣∣∣∣∣∣∣∣
(51)

The power behind viewing the states |ϕi⟩ in their determinant form is that now we need only compute
inner products between elements of the set {|ψi⟩}Ni=1 in order to estimate the effectiveness of the
PVM (49) in approximating a solution for minPVM

∑N
i=1 pi∥ρ̂i − P̂iρ̂iP̂i∥1. Recall that the states

{|ψi⟩}Ni=1 are normalized. Furthermore, assume that ⟨ψi|ψj⟩ = εij for all i ̸= j ∈ {1, ..., N}, where
εij are complex numbers satisfying |εij | ≤ δ for all i ̸= j ∈ {1, .., N}, where δ is small. Since, under
this assumption, all entries of the last column of the matrix (51) are small, this also implies that∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi

∥∥
1 is small for all i, thanks to Lemma 2.

The above estimates imply the following theorem.

Theorem 1. Consider a mixed state of the form
∑N
i=1 piρ̂i,

∑N
i=1 pi = 1, where ρ̂i := |ψi⟩⟨ψi| are

pure states acting on a Hilbert space of dimension greater than N . Furthermore, assume that the
states {|ψi⟩}i are linearly independent. Then

min
PVM

N∑
i=1

pi∥ρ̂i − P̂iρ̂iP̂i∥1 ≤

2
N∑
i=2

pi

i−1∑
k=1

1
|Dk−1Dk|

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
...

. . .
...

⟨ψk−1|ψ1⟩ ⟨ψk−1|ψ2⟩ . . . ⟨ψk−1|ψk⟩
⟨ψi|ψ1⟩ ⟨ψi|ψ2⟩ . . . ⟨ψi|ψk⟩

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣

where again

Dk :=

∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
...

. . .
...

⟨ψj |ψ1⟩ ⟨ψj |ψ2⟩ . . . ⟨ψk|ψk⟩

∣∣∣∣∣∣∣∣∣
Proof. The proof follows directly from Lemma 3 and Lemma 2, and the fact that for i = 1 the
corresponding projector is simply |ψi⟩⟨ψi| making the i = 1 term zero.
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In order to apply Theorem 1 to estimate the first term in (45), we assume that the initial state ρ̂E
1
0

is pure; it is under this assumption that we expect the joint system-environment state to converge
to an SBS as → ∞. The purity of ρ̂E

1
0 furthermore implies that the operators ρ̂

E1
t

i are pure for all i
since the evolution (27) preserves purity of states. We may thus represent them as

ρ̂
E1

t
i = |ψi,t⟩⟨ψi,t| (52)

We now use Theorem 1 to estimate (45):

1
2 min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂
E1

t
i − P̂E1

t
i ρ̂

E1
t

i P̂E1
t

i

∥∥∥∥
1

+ 1
2
∑
i

dS∑
j;j ̸=i

|σi,jγi,j(t)| ≤ (53)

dS∑
i=2

σi

i−1∑
k=1

1
|Dk−1,tDk,t|

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1,t|ψ1,t⟩ ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩
⟨ψ2,t|ψ1,t⟩ ⟨ψ2,t|ψ2,t⟩ . . . ⟨ψ2,t|ψk,t⟩

...
... . . . ...

⟨ψk−1,t|ψ1,t⟩ ⟨ψk−1,t|ψ2,t⟩ . . . ⟨ψk−1,t|ψk,t⟩
⟨ψi,t|ψ1,t⟩ ⟨ψi,t|ψ2,t⟩ . . . ⟨ψi,t|ψk,t⟩

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣+ 1

2
∑
i

dS∑
j;j ̸=i

|σi,jγi,j(t)|

(54)
where

Dk,t :=

∣∣∣∣∣∣∣∣∣
⟨ψ1,t|ψ1,t⟩ ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩
⟨ψ2,t|ψ1,t⟩ ⟨ψ2,t|ψ2,t⟩ . . . ⟨ψ2,t|ψk,t⟩

...
... . . . ...

⟨ψj,t|ψ1,t⟩ ⟨ψj,t|ψ2,t⟩ . . . ⟨ψk,t|ψk,t⟩

∣∣∣∣∣∣∣∣∣ (55)

Given that computing determinants is a difficult task, one might wonder if there is a way to avoid
doing so via further bounding the term (54) with another term that does not involve determinants.
It turns out that such an approach is possible and if the entries ⟨ψk,t|ψl,t⟩ are small enough, the
process is even easier to handle. We will develop such an approach in the section (??).

1.2 Mixed environmental states
We wil call the first term in the sum (45) the super error of discriminating the mixture

∑
i ρ̂E

1
t

xi

with the PVM
{

P̂E1
t

i

}
i
. It is called the super error because (45) bounds the discrimination error

PE
{
pi, ρ̂E

1
t

xi
, P̂E1

t
i

}
as follows.

PE

{
pi, ρ̂E

1
t

xi
, P̂E1

t
i

}
=

dS∑
i=1

σiTr

{
ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

}
≤

dS∑
i=1

σi

∥∥∥ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

(56)

The theory we have developed so far considers only the case where ρ̂E
1
t

xi
are pure states for all i. In

this subsection, we will further develop the previous section by providing the analog to Theorem 1
for the case where the environmental degrees of freedom are mixed states.

Using a simpler indexing scheme, consider a mixed state of the form
∑N
i=1 piρ̂i, where

∑N
i=1 pi = 1

and the ρ̂i are mixed states which we will express as ρ̂i =
∑M
k=1 ηkρ̂ik where all of the ρ̂ik are pure

states and
∑M
k=1 ηk = 1. Consider the super quantum state discrimination problem (now omitting

the limits of the sums)
min
POVM

∑
i

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
. (57)

The latter item is bounded above by the minimization problem that we have been concerned with
in the previous section, i.e. minimizing over all PVM as opposed to minimizing over all POVM in
(57). In turn it is also bounded above by the super PVM quantum state discrimination error as seen
in the following relationship.

min
POVM

∑
i

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min
PVM

∑
i

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ (58)
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min
PVM

∑
i

pi

∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥
1

(59)

This follows from the fact that all PVMs are POVMs, making the space over which the objective
function is minimized smaller and therefore yielding a smaller minimum.

Using the following bound from [66] we will bound (58) and (59) from below.

Theorem 2. Montanaro: Let
∑
i piρ̂i be a mixture of quantum states ρ̂i where

∑
i pi = 1. Then,

for any POVM {M̂†
iM̂i}i,

PE

{
pi, ρ̂i, M̂†

iM̂i

}
≥
∑
i>j

pipjF (ρ̂i, ρ̂j) (60)

We now have, ∑
i>j

pipjF (ρ̂i, ρ̂j) ≤ min
PVM

∑
i

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

(61)

Expanding the ρ̂i we see that

F (ρ̂i, ρ̂j) = F
(∑

k

ηkρ̂ik,
∑
k

ηkρ̂jk

)
≥
∑
k

ηkF
(

ρ̂ik, ρ̂jk

)
(62)

where we have used the joint concavity of the fidelity [67] in the last line of (62).The bound (61)
now implies that ∑

i>j

∑
k

pipjηkF
(

ρ̂ik, ρ̂jk

)
≤ min
PVM

∑
i

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

(63)

This inequality shows that a necessary condition for successful quantum state discrimination is that
ρ̂ik ⊥ ρ̂jk for all i, j, k where i ̸= j. For the case where the ρ̂i are not mixed states the respective
relationship implies that ρ̂i ⊥ ρ̂j for i ̸= j which is what we expect from our analysis in the previous
section. For the case of mixtures ρ̂i it is perhaps not surprising that we simply need to analyze
the fidelities between elements of two different mixtures, say ρ̂i and ρ̂j , in order to determine the
discriminability of the mixture

∑N
i=1 ρ̂i. As informative as (63) is, we have yet to learn anything

about the constraints on fidelities involving multiple elements of the same mixture ρ̂i, take ρ̂ik
and ρ̂il for example. It could be the case that, in principle, there need not be any restrictions on
said fidelities in order to attain successful quantum state discrimination but at the moment this is
unknown to the authors.

We would like to bound (63) from above, and to do so we will once again take a constructive
approach. The approach we will take shall be an adaptation of the methods employed in the proof
of Theorem 1 and Lemma 2. Adapting the latter coupled with the fact that P̂i must be projectors
will yield a bound that will be useful only for the cases where ρ̂ik ⊥ ρ̂jK for all k when i ̸= j and
ρ̂ik ⊥ ρ̂il for all i when l ̸= k.

Let us now construct a PVM that attempts to solve optimization on the right-hand side of
inequality (61). We begin by noting that

min
PVM

∑
i

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

≤ min
PVM

∑
i

∑
k

piηk

∥∥∥ρ̂ik − P̂iρ̂ikP̂i

∥∥∥
1

(64)

This looks very similar to the PVM quantum state discrimination problem for pure states (note
that piηk is a probability distribution) with the exception that now each element of the PVM

{
P̂i

}
i

corresponds to all elements ρ̂ik. Following the methods from the previous section, one might suggest
implementing the gram-schmidt procedure once more in order to obtain an orthonormal set of vectors
|ϕ⟩i, one for each i. However, in this case, the operators ρ̂i are mixed and therefore do not have a
representation as a vector in an appropriate Hilbert space; being able to view the mixture

∑
i ρ̂i as

an ensemble of pure states was one of the key assumptions that lead to Theorem 1. Perhaps there
is a way to implement the Gram-Schmidt process to the end of producing an analog for Theorem
(1) in a greater generality for the case where all of the ρ̂i are mixtures using the Hilbert-Schmidt
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inner product to generate orthogonal Hilbert-Schmidt operators in the Hilbert-Schmidt norm sense;
however, the authors are unaware of any such approaches that have been met with success as of yet.

We now impose an assumption on the P̂i from (64) and once again highlights that the optimal
P̂i need not have the following assumed structure.

P̂i =
M∑
k=1

P̂ik (65)

One way to guarantee that a sum such as
∑M
k=1 P̂ik is a projector is to assume that P̂ik are all

projectors with non-overlapping support.

Proof.

P̂2
i =

( M∑
k=1

P̂ik

)2
=

M∑
k=1

M∑
p=1

P̂ikP̂ip =
M∑
k=1

M∑
p=1

P̂ikP̂ipδkp =
M∑
k=1

P̂ik = P̂i (66)

Since all of the ρ̂ik are pure states, we may apply the Gram-schmidt process as we have in the
previous section in order to construct a PVM

{
P̂ik

}
ik

. The resulting PVM elements P̂ik with the
inclusion of the completion element I −

∑
i

∑
k P̂ik form a PVM that resolves the identity. There

are N × M states ρ̂ik since the index i ranges from 1 to N and the index k from 1 to M . Let us
visualize the set of operators ρ̂ik as a matrix

ρ̂11 ρ̂12 . . . ρ̂1M
ρ̂21 ρ̂22 . . . ρ̂2M

...
... . . . ...

ρ̂N1 ρ̂N2 . . . ρ̂NM

 (67)

which we will flatten into the row vector

V⃗ :=
(
ρ̂11 . . . ρ̂1M ρ̂21 . . . ρ̂2M . . . ρ̂N1 . . . . . . ρ̂NM

)
. (68)

Let us now do a relabeling and call the sth component of Vs := |ξs⟩⟨ξs|. Given a specific value
s ∈ {1, 2, ..., N ×M} e can use the following formula to obtain the corresponding ρ̂ik.

|ξs⟩⟨ξs| = ρ̂⌈ s
M ⌉, s mod M . (69)

Assuming that the set |ξs⟩⟨ξs| is a linearly independent set we now apply the Gram-Schmidt process
to obtain the family of orthonormal states

|ϕ1⟩ := |ξ1⟩ (70)

|ϕs⟩ = 1
αs

{
|ξs⟩ −

s−1∑
k=1

⟨ϕk|ξs⟩|ϕk⟩
}
, s ∈ {1, 2, ..., N ×M} (71)

where as before αi :=
∥∥|ξi⟩−

∑i−1
k=1⟨ϕk|ξi⟩|ϕk⟩

∥∥ =
√

1 −
∑i−1
k=1 |⟨ϕk|ξi⟩|2 for i > 1 and α1 = 1 are the

respective normalization constants. An identity resolving PVM
{

|ξs⟩⟨ξs|
}
s

⋃{
I −
∑
s |ξs⟩⟨ξs|

}
has

been constructed, defining ωs := p⌈ s
M ⌉ηs mod M we may now rewrite

∑
i

∑
k piηk

∥∥∥ρ̂ik − Piρ̂ikPi

∥∥∥
1

as

∑
s

ωs

∥∥∥∥|ξs⟩⟨ξs| −
( ⌈ s

M ⌉+M∑
l=⌈ s

M ⌉

|ϕl⟩⟨ϕl|
)

|ξs⟩⟨ξs|
( ⌈ s

M ⌉+M∑
l=⌈ s

M ⌉

|ϕl⟩⟨ϕl|
)∥∥∥∥

1
= (72)

∑
s

ωs

∥∥∥∥∥|ξs⟩⟨ξs| − |ϕs⟩⟨ϕs|ξs⟩⟨ξs|ϕs⟩⟨ϕs| −
( ⌈ s

M ⌉+M∑
l=⌈ s

M ⌉;l ̸=s

|ϕl⟩⟨ϕl|
)

|ξs⟩⟨ξs|
( ⌈ s

M ⌉+M∑
l=⌈ s

M ⌉;l ̸=s

|ϕl⟩⟨ϕl|
)∥∥∥∥∥

1

≤ (73)
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∑
s

ωs

∥∥∥|ξs⟩⟨ξs|−|ϕs⟩⟨ϕs|ξs⟩⟨ξs|ϕs⟩⟨ϕs|
∥∥∥

1
+
∑
s

ωs

∥∥∥∥∥(
⌈ s

M ⌉+M∑
l=⌈ s

M ⌉;l ̸=s

|ϕl⟩⟨ϕl|
)

|ξs⟩⟨ξs|
( ⌈ s

M ⌉+M∑
l=⌈ s

M ⌉;l ̸=s

|ϕl⟩⟨ϕl|
)∥∥∥∥∥

1

≤

(74)∑
s

ωs2
s−1∑
k=1

|⟨ϕk|ξs⟩| +
∑
s

ωs

⌈ s
M ⌉+M∑

l=⌈ s
M ⌉;l ̸=s

⌈ s
M ⌉+M∑

k=⌈ s
M ⌉;k ̸=s

∥∥∥|ϕl⟩⟨ϕl|ξs⟩⟨ξs|ϕk⟩⟨ϕk|
∥∥∥

1
= (75)

∑
s

ωs2
s−1∑
k=1

|⟨ϕk|ξs⟩| +
∑
s

ωs

( ⌈ s
M ⌉+M∑

l=⌈ s
M ⌉;l ̸=s

|⟨ϕl|ξs⟩|

)2

(76)

where we have used Lemma 2 in going from (74) to (75). Using Lemma (3) we may explicitly write
the terms |⟨ϕl|ξs⟩ as Gram-Schmidt determinants and use these to estimate the efficacy of the PVM
built from (70).

In this paper, mixed environmental states as the environmental degrees of freedom are not the
central focus. We shall therefore forego further analyzing the bound (76) at the moment and leave
this for future work. However, we will point out that (76) may be further bounded by the following
term.

(76) ≤ 3
∑
s

ωs
∑
l;l ̸=s

|⟨ϕl|ξs⟩| (77)

where the only restriction on the sums is that l ̸= s. This may be better estimated using Lemma 3.

1.3 Further bounds for Theorem 1.
To begin we introduce three results that we shall be using.

Theorem 3. Hadamard’s inequality for determinants [13]: Let Â be some arbitrary N ×N matrix
with entries Ai,j. Then

det
(
Â
)

≤
N∏
j=1

( N∑
i=1

|Aij |2
) 1

2

.

Theorem 4. [13] Let I + B̂ be an N × N matrix with entries δij + Bij where Bi,i = 0 for all i.
Then

det(I + B̂) =
N∏
j=1

(
1 + λj

(
B̂
))

Theorem 5. Gerschgorin Theorem [53]: Let Â be an arbitrary N ×N matrix with matrix elements
Ai,j. Now, define

Di :=
{
z ∈ C : |z −Aii| ≤

∑
j;j ̸=i

|Aij |
}
.

Then, all of the eigenvalues of the operator Â are found in the set GN :=
⋃N
i=1 Di. The sets Di are

known as Gerschgorin discs.

Now we use these theorems to prove the following.

Theorem 6.
1
2 min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂E
1
t

xi
− PE1

t
i ρ̂E

1
t

xi
PE1

t
i

∥∥∥∥
1

≤ (78)

dS

(
1 + dSMdS

)dS−1 dS∑
i ̸=j

σi|⟨ψi,t|ψj,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣i−1 (79)
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where

Gk :=
k⋃
i=1

Dk
i (80)

Dk
i :=

{
x ∈ R : |x| ≤

∑
j;j ̸=i

|Bkij,t|
}
i ∈ {1, ..., k} (81)

MdS
(t) := max

n̸=m;{1,...,dS}
|⟨ψi,t|ψj,t⟩| (82)

and

B̂k
t :=


0 ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩

⟨ψ2,t|ψ1,t⟩ 0 . . . ⟨ψ2,t|ψk,t⟩
...

...
. . .

...
⟨ψj,t|ψ1,t⟩ ⟨ψj,t|ψ2,t⟩ . . . 0

 (83)

Proof. Assume that k > 2. Then, using Theorem 3

Â :=
∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1,t|ψ1,t⟩ ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩
⟨ψ2,t|ψ1,t⟩ ⟨ψ2,t|ψ2,t⟩ . . . ⟨ψ2,t|ψk,t⟩

...
... . . . ...

⟨ψk−1,t|ψ1,t⟩ ⟨ψk−1,t|ψ2,t⟩ . . . ⟨ψk−1,t|ψk,t⟩
⟨ψi,t|ψ1,t⟩ ⟨ψi,t|ψ2,t⟩ . . . ⟨ψi,t|ψk,t⟩

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣ ≤ (84)

k∏
n=1

( k∑
m=1

|An,m|2
) 1

2

(85)

Where
Anm = ⟨ψn,t|ψm,t⟩ for n ∈ {1, ..., k − 1} m ∈ {1, ..., k}

and
Anm = ⟨ψi,t|ψm,t⟩ for n = k m ∈ {1, ..., k}.

Therefore,

k∏
n=1

( k∑
m=1

|Anm|2
) 1

2

=
k−1∏
n=1

( k∑
m=1

|⟨ψn,t|ψm,t⟩|2
) 1

2
( k∑
m=1

|⟨ψi,t|ψm,t⟩|2
) 1

2

≤ (86)

(
max

n∈{1,...,k−1}

k∑
m=1

|⟨ψn,t|ψm,t⟩|2
) k−1

2
( k∑
m=1

|⟨ψi,t|ψm,t⟩|2
) 1

2

(87)

(
1 + max

n∈{1,...,k−1}

k∑
m=1;m ̸=n

|⟨ψn(t)|ψm(t)⟩|2
) k−1

2
( k∑
m=1

|⟨ψi,t|ψm,t⟩|2
) 1

2

≤ (88)

(
1 + max

n∈{1,...,dS−1}

dS∑
m=1;m ̸=n

|⟨ψn,t|ψm,t⟩|2
) dS −1

2
( k∑
m=1

|⟨ψi,t|ψm,t⟩|2
) 1

2

≤ (89)

(
1 + dS max

n̸=m;{1,...,dS}
|⟨ψn,t|ψm,t⟩|

)dS−1( k∑
m=1

|⟨ψi,t|ψm,t⟩|
)

(90)

Now, let us shift our attention to the terms Dk,t in Theorem 1, here time time-dependent.

Dk,t :=

∣∣∣∣∣∣∣∣∣
⟨ψ1,t|ψ1,t⟩ ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩
⟨ψ2,t|ψ1,t⟩ ⟨ψ2,t|ψ2,t⟩ . . . ⟨ψ2,t|ψk,t⟩

...
... . . . ...

⟨ψj(t)|ψ1(t)⟩ ⟨ψj,t|ψ2,t⟩ . . . ⟨ψk,t|ψk,t⟩

∣∣∣∣∣∣∣∣∣ (91)
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Using Theorem 4 we have that

|Dk,t| =
∣∣∣∣ k∏
j=1

(
1 + λj

(
B̂k
t

))∣∣∣∣ (92)

where again

B̂k
t :=


0 ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψk,t⟩

⟨ψ2,t|ψ1,t⟩ 0 . . . ⟨ψ2,t|ψk,t⟩
...

... . . . ...
⟨ψj,t|ψ1,t⟩ ⟨ψj,t|ψ2,t⟩ . . . 0

 (93)

Now, using Theorem 5 we know that the eigenvalues of B̂kt lie within the Gerschgorin discs

Dk
i :=

{
x ∈ R : |x| ≤

∑
j;j ̸=i

|Bij,t|
}
i ∈ {1, ..., k} (94)

where we have replaced the C for R since Hermitian operators have real eigenvalues; we have also
made use of the fact that Bkii,0 = 0 for all i. The superscript of Dk

i is used to highlight its pertinence
to the determinant Dk,t. Now,

|Dk,t| =
∣∣∣∣ k∏
j=1

(
1 + λj

(
B̂k
t

)∣∣∣∣ =
k∏
j=1

∣∣1 + λj
(
B̂k
t

)∣∣ ≥ (95)

≥
k∏
j=1

min
x∈Gk

∣∣1 + x
∣∣ = min

x∈Gk

∣∣1 + x
∣∣k. (96)

Here we remind the reader that Gk :=
⋃k
i=1 Dk

i . Minimizing over a larger set yields a smaller
minimum, hence,

min
x∈Gk

∣∣1 + x
∣∣k ≥ min

x∈GdS

∣∣1 + x
∣∣k ≥ min

x∈GdS

∣∣1 − |x|
∣∣k. (97)

Using (90), and (97) we may now further bound the determinant-including terms in result (54) to
obtain

1
2 min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂
E1

t
i − P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

≤ (98)

dS∑
i=2

σi

i−1∑
k=1

(
1 + dSMds

(t)
)dS−1(∑k

m=1 |⟨ψi,t|ψm,t⟩|
)

minx∈GdS

∣∣1 − |x|
∣∣k = (99)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
k=1

k∑
m=1

|⟨ψi,t|ψm,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣k ≤ (100)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
k=1

i−1∑
m=1

|⟨ψi,t|ψm,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (101)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi(i− 1)

i−1∑
m=1

|⟨ψi,t|ψm,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (102)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
m=1

|⟨ψi,t|ψm,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣i−1 ≤ (103)

dS

(
1 + dSMdS

(t)
)dS−1∑

i

dS∑
j;j ̸=i

σi|⟨ψi,t|ψj,t⟩|
minx∈GdS

∣∣1 − |x|
∣∣i−1 (104)
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Corollary 1. Assume that dSMdS
(t) < 1, then

1
2 min
PVM

dS∑
i=1

σi

∥∥∥∥ρ̂
E1

t
i − P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

≤ (105)

dS

(
1 + dSMdS

(t)
)dS−1

(
1 − dSMdS

(t)
)dS−1

dS∑
i ̸=j

σi|⟨ψi,t|ψj,t⟩| (106)

Corollary (1) may be generalized with ease to cases with NE greater than 1.

2 Problems in SBS when introducing continuous variables
There are problems that arise when attempting to define an SBS state for the case where continuous
variables are involved. To appreciate them, let us examine the state (22) in such a case. The system’s
state is now a density operator ρ̂S0 in an infinite-dimensional Hilbert space; for our purposes, it will
be convenient to represent this space as L2(R). Analogously to (4), we define the interaction of the
system with the environment as

HI = γX̂ ⊗ B̂

for simplicity; where X̂ is the position operator. Being a trace-class operator, ρ̂S0 can be represented
as an integral operator, whose kernel we denote by K(x, y). The expansion analogous to (23) is the
following:

ρ̂t =
∫ ∫

dxdyK(x, y)γ2
x,y(t)|x⟩⟨y| ⊗ ρ̂E

1
t

x,y (107)

where as expected ρ̂E
1
t

x,y := e−ixB̂tρ̂E
1
0eiyB̂t and γ2

x,y(t) := Tr
{

ρ̂E
2
t

x,y

}
. Unlike the state (22), the state

(107) does not have a clear decomposition into off-diagonal and of diagonal terms using the spectral
decomposition of the operator X̂ in terms of generalized eigenvectors

∣∣x〉, which we have employed
to expand U1,t

(
Et
(
ρ̂S0

)
⊗ ρ̂E

1
0
)

=
(
e−itX̂⊗B̂)(Et(ρ̂s0

)
⊗ ρ̂E

1
0
)(
e−itX̂⊗B̂). In the finite-dimensional

case, we could clearly distinguish between diagonal and off-diagonal entries in order to deduce an
SBS structure approximating the state in question. In the continuous variable case, this approach
breaks down since the "diagonal" term is now

ρ̂t =
∫
dxK(x, x)|x⟩⟨x| ⊗ ρ̂E

1
t

x (108)

This is not a trace class operator, since it is unitarily equivalent to a tensor product of a multiplication
operator and a trace class operator—thus it cannot represent a quantum state.

Another difficulty in moving into the continuous variable case is an increase in complexity when
dealing with trace norms; starting from the fact that

∥∥∣∣x〉〈y∣∣∥∥1 is undefined for generalized states∣∣x〉 and
∣∣y〉.

3 SBS for continuous variables
We now discuss the phenomenon of decoherence which results from an evolution of the system
under a quantum map. Let us focus on the case described by (22), where the system’s state evolves
according to:

ρ̂t :=
(
e−itγf(X̂)⊗g(B̂))(Et(ρ̂S0

)
⊗ ρ̂E

1
0
)(
eitγf(X̂)⊗g(B̂)) := U1,t

(
Et
(
ρ̂S0

)
⊗ ρ̂E

1
0
)

(109)

We will be assuming the states ρ̂S0 and ρ̂E
1
0 are pure. Under our assumptions, the operators X̂

and B̂ are self-adjoint and have purely absolutely continuous spectrum. As we have done in earlier
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sections, we write ρ̂S0 =
∫ ∫

dxdyK(x, y)|x⟩⟨y| using the resolution of identity associated with the
operator X̂, i.e. X̂ =

∫
x|x⟩⟨x|dx. Furthermore, the quantum map Et has the representation

Et
(
ρ̂s0

)
=
∫ ∫

K(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣dxdy (110)

where Γ(t, x, y) is a kernel yielding non-unitary dynamics obtained via partial tracing as seen in
(11). Substituting this into (109) we obtain

ρ̂t =
∫ ∫

dxdyK(x, y)Γ(t, x, y)
∣∣x〉〈y∣∣⊗ ρ̂E

1
t

x,y (111)

where we remind the reader that ρ̂E
1
t

x,y := e−itγf(x)g(B̂)ρ̂E
1
0eitγf(y)g(B̂).

In what follows we will partition the real line into intervals of length greater than or equal to
some resolution limit Σ, which may in general depend on t but we will suppress this dependence for
now and discuss such cases in Section 4. The idea is using a net {xi}i of the real line and building
the sets ∆i := (xi − σi

2 , xi + σi

2 ) of lenght σi constrained to the criteria xi+1 − xi ≥ Σ ∀i, σi ≥ Σ for
all integers i. We index the σi because in general, this partition need not be made of sets of equal
length.

It will be of interest to us to estimate the trace norm of the non-diagonal terms of the operator
(111), i.e. i ̸= j. We will use this partitioning scheme to rewrite (111) in an equivalent form as
follows.

ρ̂t =
∑
i,j

∫
∆i

∫
∆j

dxdyK(x, y)Γ(t(x− y))|x⟩⟨y| ⊗ ρ̂E
1
t

x,y (112)

Some elementary work leads to∥∥∥∥∑
i

∑
j;j ̸=i

∫
∆i

∫
∆j

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂E
1
t

x,y

∥∥∥∥
1

= (113)

∥∥∥∥e−itγf(X̂)⊗g(B̂)

({∑
i

∑
j;j ̸=i

∫
∆i

∫
∆j

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y|

}
⊗ ρ̂E

1
0

)
eitγf(X̂)⊗g(B̂)

∥∥∥∥
1

= (114)

∥∥∥∥
{∑

i

∑
j;j ̸=i

∫
∆i

∫
∆j

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y|

}
⊗ ρ̂E

1
0

∥∥∥∥
1

= (115)

∥∥∥∥
{∑

i

∑
j;j ̸=i

∫
∆i

∫
∆j

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y|

}∥∥∥∥
1

≤ (116)

∑
i

∑
j;j ̸=i

∥∥∥∥∫
∆i

∫
∆j

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y|
∥∥∥∥

1
= (117)

∑
i

∑
j;j ̸=i

∥∥∥∥P∆i
Et
(
ρ̂S0

)
P∆j

∥∥∥∥
1

(118)

where P∆i
:=
∫

∆i
|x⟩⟨x|dx, i.e. the spectral projector of X̂ projecting onto the subspace correspond-

ing to the set ∆i.

3.1 Bounds of the Kupsch kind.
Estimating the trace norms in equation (119) below will require us to invoke some ideas from
Kupsch’s seminal paper on decoherence [38] where it is proven that if ∆j and ∆i are intervals with
a distance δ > 0, then

∥P∆i
Et
(
ρ̂S0

)
P∆j

∥ ≤ C(1 + δ2ψ(t))−γ (119)
with a function ψ(t) ≥ 0 which diverges for t → ∞, γ an exponent which can be large and some
constant C.
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At a first glance, this bound might not seem useful to our work since we are interested in the trace
norm rather than the operator norm of the quantity P̂∆i

Et
(
ρ̂S0

)
P̂∆j

. Furthermore, it is not explicit
what γ and ψ(t) should be. We will provide a new version of this result which closely follows the
Riemann-Stieltjes integration techniques employed by Kupsch when proving (118) in the appendix
of [38].

Theorem 7. Kupsch like bounds: Let ρ̂t be some density operator which may be represented using
the generalized spectrum of the position operator X̂ as

ρ̂t =
∫ ∫

Γ(t, x, y)K0(x, y)|x⟩⟨y|dxdy.

where Γ(t, x, y) ∈ C1(R3) for all [0, T ) × ∆i × ∆j ⊂ R. We will assume that ρ̂0 is pure and write
ρ̂0 = |ξ0⟩⟨ξ0| in what follows. Furthermore, let P̂Ω :=

∫
Ω dx|x⟩⟨x|. Then, for a fixed t > 0

∥P̂∆i
ρ̂tP̂∆j

∥1 ≤ sup
(x,y)∈∆i×∆j

(
2|Γ(t, x, y)| + |∆j ||∂yΓ(t, x, y)|

)
when

∣∣∣∆i × ∆j

⋂
supp{Γ(t, x, y)K0(x, y)}

∣∣∣ ̸= 0, otherwise ∥P̂∆i
ρ̂tP̂∆j

∥1 = 0

Proof. CASE 1)
First consider the set ∆i × ∆j with a zero intersection∣∣∣∆i × ∆j

⋂
supp{Γ(t, x, y)K0(x, y)}

∣∣∣ = 0

In this case ∥∥∥∥P̂∆i
ρ̂tP̂∆j

∥∥∥∥
1

=
∥∥∥∥ ∫

∆i

∫
∆j

Γ(t, x, y)K0(x, y)|x⟩⟨y|dxdy
∥∥∥∥

1
=∥∥∥∥∫

∆i

∫
∆j

0|x⟩⟨y|dxdy
∥∥∥∥

1
= 0∥P̂∆i

P̂∆j
∥1 = 0.

CASE 2)
Now assume that ∣∣∣∆i × ∆j

⋂
supp{Γ(t, x, y)K0(x, y)}

∣∣∣ ̸= 0

Let us begin by considering the operator

T̂t(y) :=
∫

∆i

Γ(t, x, y)|x⟩⟨x|dx.

Where i is fixed. T̂t(y) is a differentiable family of operators, with respect to y, with the operator
norm estimates

∥T̂t(y)∥ ≤ sup
x∈∆i

|Γ(t, x, y)|

since

∥T̂t(y)∥2 = sup
∥|ψ⟩∥=1

∥T̂t(y)|ψ⟩∥2 = sup
∥|ψ⟩∥=1

∫
∆i

∫
∆i

Γ(t, x′, y)∗Γ(t, x, y)⟨ψ|x′⟩⟨x′|x⟩⟨x|ψ⟩dx′dx =

sup
∥|ψ⟩∥=1

∫
∆i

|Γ(t, x, y)|2⟨ψ|x⟩⟨x|ψ⟩dx ≤ sup
x∈∆i

|Γ(t, x, y)|2 sup
∥|ψ⟩∥=1

∫
∆i

|ψ(x)|2dx ≤

sup
x∈∆i

|Γ(t, x, y)|2

In a similar way we may bound the operator T̂′
t(y) :=

∫
∆i

Γ′(t, x, y)|x⟩|⟨x|dx. Where Γ′(t, x, y) :=

∂yΓ(t, x, y).i.e.
∥T̂′

t(y)∥ ≤ sup
x∈∆i

|Γ
′
(t, x, y)|
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Furthermore, define Ĵt(y) := T̂t(y)ρ̂0 and Ĵ′

t(y) := T̂′

t(y)ρ̂0. These operators also have uniform
estimates; due to the estimates computed above, and the inequality ∥AC∥1 ≤ ∥A∥∥B∥1 one may
easily show that

∥Ĵt(y)∥1 ≤ sup
x∈∆i

|Γ(t, x, y)|
∥∥ρ̂0
∥∥

1 = sup
x∈∆i

|Γ(t, x, y)|

and that

∥Ĵ
′

t(y)∥1 ≤ sup
x∈∆i

|Γ
′
(t, x, y)|

∥∥ρ̂0
∥∥

1 = sup
x∈∆i

|Γ
′
(t, x, y)|.

Before we proceed we show the relationship between the operator T̂′
t(y) and the weak derivative

∂y⟨ψ|T̂t(y)|ϕ⟩.
∂y⟨ψ|T̂t(y)|ϕ⟩ = ∂y

∫
∆i

Γ(t, x, y)⟨ψ|x⟩⟨x|ϕ⟩dx

We assumed that Γ(t, x, y) is C1(∆i) in both x and y for any ∆i, therefore we may swap the order
of the integral and the derivative.

∂y

∫
∆i

Γ(t, x, y)⟨ψ|x⟩⟨x|ϕ⟩dx =
∫

∆i

∂yΓ(t, x, y)⟨ψ|x⟩⟨x|ϕ⟩dx =

∫
∆i

Γ
′
(t, x, y)⟨ψ|x⟩⟨x|ϕ⟩dx = ⟨ψ|

(∫
∆i

Γ
′
(t, x, y)|x⟩⟨x|dx

)
|ϕ⟩ = ⟨ψ|T̂ ′

t (y)|ϕ⟩

We therefore have
∂y⟨ψ|T̂t(y)|ϕ⟩ = ⟨ψ|T̂′

t(y)|ϕ⟩ (120)

Now, for all intervals ∆j we have
∫

∆j
Ĵt(y)|y⟩⟨y|dy = P̂∆i

ρ̂tP̂∆j
. We write ∆j := [aj , bj ]. We will

show that the following identity holds.∫
∆j

Ĵt(y)|y⟩⟨y|dy = Ĵt(bj)P̂(−∞,bj ] − Ĵt(aj)P̂(−∞,aj ] −
∫

∆j

Ĵ′
t(y)P̂(−∞,y]dy. (121)

For arbitrary |ψ⟩ and |ϕ⟩

⟨ψ|
∫

∆j

Ĵt(y)|y⟩⟨y|dy| ϕ⟩ =
∫

∆j

⟨ψ|Ĵt(y)|y⟩⟨y|ϕ⟩dy. (122)

By the definition of Ĵt(y) one has

⟨ψ|Ĵt(y)|y⟩ = ⟨ψ|T̂t(y)ρ̂0|y⟩ = ⟨ψ|T̂t(y)|ξ0⟩⟨ξ0|y⟩. (123)

Picking up from (122).
(122) =

∫
∆j

⟨ψ|T̂t(y)|ξ0⟩⟨ξ0|y⟩⟨y|ϕ⟩dy = (124)

[
⟨ψ|T̂t(y)|ξ0⟩⟨ξ0|

(∫ y

−∞
dy′|y′⟩⟨y′|

)
|ϕ⟩

]∣∣∣∣∣
bj

aj

−
∫

∆j

(∫ y

−∞
⟨ξ0|y′⟩⟨y′|ϕ⟩dy′

)
d

(
⟨ψ|T̂t(y)|ξ0⟩

)
= (125)

[
⟨ψ|T̂t(y)|ξ0⟩⟨ξ0|P(−∞,y]|ϕ⟩

]∣∣∣∣∣
bj

aj

−
∫

∆j

(∫ y

−∞
⟨ξ0|y′⟩⟨y′|ϕ⟩dy′

)(
⟨ψ|T̂t(y)|ξ0⟩

)′

dy = (126)

[
⟨ψ|T̂t(y)|ξ0⟩⟨ξ0|P̂(−∞,y]|ϕ⟩

]∣∣∣∣∣
bj

aj

−
∫

∆j

(
⟨ψ|T̂t(y)|ξ0⟩

)′

⟨ξ0|P̂(−∞,y]|ϕ⟩dy = (127)
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⟨ψ|

[
T̂t(y)|ξ0⟩⟨ξ0|P̂(−∞,y]

]∣∣∣∣∣
bj

aj

|ϕ⟩ − ⟨ψ|
∫

∆j

T̂′
t(y)|ξ0⟩⟨ξ0|P̂(−∞,y]dy|ϕ⟩ = (128)

⟨ψ|

(
Ĵt(y)P̂(−∞,y]

∣∣∣∣∣
bj

aj

−
∫

∆j

Ĵ′
t(y)P̂(−∞,y]dy

)
|ϕ⟩ = (129)

⟨ψ|

(
Ĵt(bj)P̂(−∞,bj ] − Ĵt(aj)P̂(−∞,aj ] −

∫
∆j

Ĵ′
t(y)P̂(−∞,y]dy

)
|ϕ⟩ = (130)

We therefore have
∥P̂∆i

ρ̂tP̂∆j
∥1 =

∥∥∥∥∫
∆j

Ĵt(y)|y⟩⟨y|dy
∥∥∥∥

1
=∥∥∥∥Ĵt(bj)P̂(−∞,bj ] − Ĵt(aj)P̂(−∞,aj ] −

∫
∆j

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥
1

≤

∥Ĵt(bj)P̂(−∞,bj ]∥1 + ∥Ĵt(aj)P̂(−∞,aj ]∥1 +
∥∥∥∥∫

∆j

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥
1

≤

∥Ĵt(bj)∥1∥P̂(−∞,bj ]∥ + ∥Ĵt(aj)∥1∥P̂(−∞,aj ]∥ +
∫

∆j

∥Ĵt(y)′P̂(−∞,y]∥1dy ≤

∥Ĵt(bj)∥1 + ∥Ĵt(aj)∥1 +
∫

∆j

∥Ĵ′
t(y)∥1∥P̂(−∞,y]∥dy =

∥Ĵt(bj)∥1 + ∥Ĵt(aj)∥1 +
∫

∆j

∥Ĵ′
t(y)∥1dy ≤

∥Ĵt(bj)∥1 + ∥Ĵt(aj)∥1 + |∆j | sup
y∈∆j

∥Ĵ′
t(y)∥1dy ≤

sup
x∈∆i

|Γ(t, x, bj)| + sup
x∈∆i

|Γ(t, x, aj)| + |∆j | sup
x∈∆i,y∈∆j

|∂yΓ(t, x, y)| ≤

sup
(x,y)∈∆i×∆j

(
2|Γ(t, x, y)| + |∆j ||Γ

′
(t, x, y)|

)

3.2 Estimating the diagonal term
We have hitherto developed the tools necessary to estimate the trace norm of the "off-diagonal"
terms of the density operator (112). We shall now study the "diagonal" terms of the same state
(112). i.e.

ρ̂t =
∑
i

∫
∆i

∫
∆i

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂E
1
t

x,y. (131)

For the "off-diagonal" terms we were simply interested in bounding the totality of the terms in order
to estimate the asymptotic behavior. For the diagonal terms we are interested in the asymptotic
limit of the following trace norm optimization.

min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

−
∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)∥∥∥∥
1

(132)

The minimization is taken over all PVMs (projection valued measures) resolving the identity operator
of the space associated with the environmental degrees of freedom. The term

∑
i

(
P̂∆i

⊗I
)

ρ̂t

(
P̂∆i

⊗

I
)

is indeed just another way o writing the state (131). The use of the PVM {P̂∆i
}i in the first

term of (132) found in (132) is just technical. However, the usage of the same PVM on the second
term in the difference of (132) does imply measurement of the von Neumann type performed on the
system; i.e in a local sense in the sense of the following definition.
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Definition 4. Unread von Neumann measurement: Consider a PVM {P̂i}i acting in some Hilbert
space of arbitrary dimension. Furthermore, consider a density operator ρ̂ which acts in the same
Hilbert space. Each element of the PVM is a projection onto an eigenspace of the self-adjoint
operator modeling the measurement apparatus. The density operator of the system after obtaining
the measurement result i is

P̂iρ̂P̂i

Tr
{

P̂iρ̂P̂i

}
The state above is the resulting state assuming that we have "read out" the measurement. However,
if we do not read out the results of the measurement what we have is a mixture

∑
i

pi
P̂iρ̂P̂i

Tr
{

P̂iρ̂P̂i

}
where pi is the probability of the ith outcome of the measurement. Since pi = Tr{P̂iρ̂}, the unread
state of the system is

∑
i

pi
P̂iρ̂P̂i

Tr
{

P̂iρ̂P̂i

} =
∑
i

Tr
{

P̂iρ̂P̂i

} P̂iρ̂P̂i

Tr
{

P̂iρ̂P̂i

} =
∑
i

P̂iρ̂P̂i

One might have already noted that the map
∑
i P̂∆i

⊗ P̂E1
t

i

(
...
)
P̂∆i

⊗ P̂E1
t

i is unlike the related
measurements of von Neumann type seen in definition (4) since they do not preserve the trace of a
density matrix. Both are indeed completely positive maps but the latter map turns out to reduce
the trace in general, i.e.

Tr

{∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)}
≤ Tr{ρ̂t} = 1. (133)

Indeed the PVM {P̂∆i
⊗ P̂E1

t
i }i by itself does not describe a measurement for the product of the

systems and environments Hilbert spaces because it does not resolve the identity. The associated
PVM will indeed be the family of projectors {P̂∆i

⊗ P̂E1
t

j }i,j . i.e. including situations where the
environment measures an outcome j different from the outcome measured by the system i ̸= j.

Let us now estimate (132). We rewrite the operator
∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

in the form:

∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

=
∑
i

∫
∆i

∫
∆i

dxdyK(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂E
1
t

x,y = (134)

∑
i

p̄i

∫
∆i

∫
∆i

dxdy
K(x, y)
p̄i

Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂E
1
t

x,y = (135)

where
p̄i :=

∫
∆i

K(x, x)dx.

That is,
(135) =

∑
i

p̄i

∫
R

∫
R
Ki(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂E

1
t

x,y (136)

where we now define

Ki(x, y) := 1∆i
(x)1∆i

(y)K(x, y)
p̄i

= 1∆i
(x)ψ(x)√
p̄i

1∆i
(y)ψ∗(y)√
p̄i

recalling that
K(x, y) = ψ(x)ψ∗(y).
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since the initial state of the system is pure. Furthermore, let us define

ψSi
(x) := 1∆i

(x)ψ(x)√
p̄i

and write
Ki(x, y) = ψ∗

Si
(x)ψSi(y).

Finally,
(136) =

∑
i

p̄iU1,t
(
Et
(
ρ̂Si

)
⊗ ρ̂E

1
0
)

(137)

defining

ρ̂Si
:=

P̂∆i
ρ̂S0P̂∆i

Tr
{

P̂∆i
ρ̂S0P̂∆i

} =
∫ ∫

Ki(x, y)|x⟩⟨y|dxdy (138)

and reminding the reader that

U1,t(Â) := e−itγf(X̂)⊗g(B̂)Âeitγf(X̂)⊗g(B̂).

We may now write∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)
=
∑
i

p̄i

(
I ⊗ P̂E1

t
i

)
U1,t

(
E 1
t

(
ρ̂Si

)
⊗ ρ̂E0

)(
I ⊗ P̂E1

t
i

)
(139)

Finally, normalizing the operator (139) we obtain

ρ̂CSBS,t :=
∑
i

p̄i

(
I ⊗ P̂E1

t
i

)
U1,t

(
E 1
t

(
ρ̂Si

)
⊗ ρ̂E0

)(
I ⊗ P̂E1

t
i

)
. (140)

The notation CSBS stands for continuous variables SBS, this is a concept that will generalize the
concept of SBS to the CV case. A more in-depth discussion regarding the continuous variables
SBS will be had in following sections. As for the discrete variables case, we will be estimating
∥ρ̂t − N ρ̂CSBS,t∥1 and then using Lemma 1 to bound ∥ρ̂t − ρ̂CSBS,t∥1.

Utilizing this new representation for (134) and the left-hand side of the equation (139), we can
see more clearly that the quantum map Et may be avoided by exploiting the inequality ∥Mt

(
σ̂
)
∥1 ≤

∥σ̂∥1, known to be true for all density operators σ̂ and quantum maps Mt and the following theorem.

Theorem 8. Let ρ̂, σ̂ and η̂ all be pure density operators acting respectively in the Hilbert spaces
HS, HE1 , and HE2 . We let X̂ be a position operator. Furthermore, let X̂, B̂1 and B̂2 be either
position or momentum operators acting respectively in the Hilbert spaces HS, HE1 , and HE2 . Let
P̂ be a bounded operator acting in the Hilbert space HE1 . Finally, assume that Â is a trace class
operator and let us define

Ut

(
Â
)

:= e−itX̂⊗B̂1ÂeitX̂⊗B̂1 ,

Et
(
Â
)

:= TrE2

{(
e−itX̂⊗IE1 ⊗B̂2

)(
Â ⊗ η̂

)(
eitX̂⊗IE1 ⊗B̂2

)}
,

and
ES,t

(
Â
)

:=
∫ ∫

⟨x|Â|y⟩TrE2

{
e−itxB̂2 η̂eityB̂2

}
|x⟩⟨y|dxdy

then
Et

((
IS ⊗ P̂

)
Ut

(
ρ̂ ⊗ σ̂

)(
IS ⊗ P̂

))
=
(
IS ⊗ P̂

)
Ut

(
ES,t

(
ρ̂
)

⊗ σ̂
)(

IS ⊗ P̂
)

Proof.

Et

((
IS ⊗ P̂

)
Ut

(
ρ̂ ⊗ σ̂

)(
IS ⊗ P̂

))
= (141)

TrE2

{(
e−itX̂⊗IE1 ⊗B̂2

)((
IS ⊗ P̂

)
Ut

(
ES,t

(
ρ̂
)

⊗ σ̂
)(

IS ⊗ P̂
)

⊗ η̂

)(
eitX̂⊗IE1 ⊗B̂2

)}
= (142)
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TrE2

{(
e−itX̂⊗IE1 ⊗B̂2

)((
IS⊗P̂

)(∫ ∫
K(x, y)|x⟩⟨y|⊗e−txB̂1σ̂eityB̂1dxdy

)(
IS⊗P̂

)
⊗η̂

)(
eitX̂⊗IE1 ⊗B̂2

)}
=

(143)

TrE2

{(
e−itX̂⊗IE1 ⊗B̂2

)((∫ ∫
K(x, y)|x⟩⟨y| ⊗ P̂e−txB̂1σ̂eityB̂1P̂dxdy

)
⊗ η̂

)(
eitX̂⊗IE1 ⊗B̂2

)}
=

(144)

TrE2

{∫ ∫
K(x, y)|x⟩⟨y| ⊗ P̂e−tx ˆ̂B1σ̂eityB̂1P̂ ⊗ e−itxB̂2 η̂eityB̂2dxdy

}
= (145)∫ ∫

K(x, y)TrE2

{
e−itxB̂2 η̂eityB̂2

}
|x⟩⟨y| ⊗ P̂e−txB̂1σ̂eityB̂1P̂dxdy = (146)

P̂e−itX̂⊗B̂1

(∫ ∫
K(x, y)TrE2

{
e−itxB̂2 η̂eityB̂2

}
|x⟩⟨y| ⊗ σ̂dxdy

)
eitX̂⊗B̂1P̂ = (147)

(
IS ⊗ P̂

)
e−itX̂⊗B̂1

(∫ ∫
K(x, y)TrE2

{
e−itxB̂2 η̂eityB̂2

}
|x⟩⟨y| ⊗ σ̂dxdy

)
eitX̂⊗B̂1

(
I ⊗ P̂

)
= (148)

(
IS ⊗ P̂

)
e−itX̂⊗B̂1

(
ES,t

(
ρ̂
)

⊗ σ̂

)
eitX̂⊗B̂1

(
I ⊗ P̂

)
(149)

Now we estimate the following trace distance.∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

−
∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)∥∥∥∥
1

= (150)

∥∥∥∥∑
i

p̄i

(
U1,t

(
Et
(
ρ̂Si

)
⊗ ρ̂E

1
0
)

−
(
I ⊗ P̂E1

t
i

)
U1,t

(
Et
(
ρ̂Si

)
⊗ ρ̂E

1
0
)(
I ⊗ P̂E1

t
i

))∥∥∥∥
1

≤ (151)

∑
i

p̄i

∥∥∥∥U1,t
(
Et
(
ρ̂Si

)
⊗ ρ̂E

1
0
)

−
(
I ⊗ P̂E1

t
i

)
U1,t

(
Et
(
ρ̂Si

)
⊗ ρ̂E

1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1

≤ (152)

∑
i

p̄i

∥∥∥∥Et
(

U1,t
(
ρ̂Si

⊗ ρ̂E
1
0
)

−
(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

))∥∥∥∥
1

≤ (153)

∑
i

p̄i

∥∥∥∥U1,t
(
ρ̂Si

⊗ ρ̂E
1
0
)

−
(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1

(154)

where we have used Theorem 8 going from (152) to (153) in order to reorder the composition of
the maps present. Without the effects of the quantum map Et the local kernels of the system and
environmental degrees of freedom are henceforth separable. In fact, the state Ut

(
ρ̂Si

⊗ ρ̂E
1
0
)

above
is pure! To accentuate the latter we write said state as follows.

Ut

(
ρ̂Si

⊗ ρ̂E
1
0
)

:= Ût

(
|ψSi⟩⟨ψSi | ⊗ |ψE1

0
⟩⟨ψE1

0
|
)

Û†
t =

(
Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
))(

Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
))†

.

(155)
from which it follows that(
I⊗ P̂E1

t
i

)
Ut

(
ρ̂Si

⊗ ρ̂E
1
0
)(

I⊗ P̂E1
t

i

)
=
(
I⊗ P̂E1

t
i Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
))(

I⊗ P̂E1
t

i Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
))†

.

(156)
where of course Ût := e−itγf(X̂)⊗g(B̂).

Before continuing we will define the following significant object.

Ni := Tr

{(
I ⊗ P̂E1

t
i

)
Ut

(
ρ̂Si

⊗ ρ̂E
1
0
)(

I ⊗ P̂E1
t

i

)}
= (157)
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⟨ψSi | ⊗ ⟨ψE1
0
|Û†

t

(
I ⊗ P̂E1

t
i

)
Ût|ψSi⟩ ⊗ |ψE1

0
⟩ = (158)∫

dyψ∗
Si

(y)⟨y| ⊗ ⟨ψE1
0
|Û†

t

(
I ⊗ P̂E1

t
i

)
Ût

∫
dxψSi

(x)|x⟩ ⊗ |ψE1
0
⟩ = (159)∫ ∫

dydxKi(x, y)⟨y|x⟩⟨ψE1
0
|eitγf(y)g(B̂)P̂E1

t
i e−itγf(x)g(B̂)|ψE1

0
⟩ = (160)∫

dx|ψSi
(x)|2⟨ψE1

0
|eitγf(x)g(B̂)P̂E1

t
i e−itγf(x)g(B̂)|ψE1

0
⟩ = (161)∫

|ψSi(x)|2⟨ψE1
0
|eitγf(x)g(B̂)P̂E1

t
i P̂E1

t
i e−itγf(x)g(B̂)|ψE1

0
⟩ = (162)∫

dx|ψSi
(x)|2Tr

{
P̂E1

t
i e−itγf(x)g(B̂)|ψE1

0
⟩⟨ψE1

0
|eitγf(x)g(B̂)P̂E1

t
i

}
= (163)∫

dx|ψSi
(x)|2Tr

{
P̂E1

t
i e−itγf(x)g(B̂)ρ̂E

1
0eitγf(x)g(B̂)P̂E1

t
i

}
= (164)∫

dx|ψSi(x)|2Tr
{

P̂E1
t

i ρ̂E
1
t

x,xP̂E1
t

i

}
= (165)

Tr

{
P̂E1

t
i

(∫
dx|ψSi

(x)|2ρ̂E
1
t

x,x

)
P̂E1

t
i

}
:= (166)

Tr

{
P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

}
(167)

where we define the quantum map Λt,i as follows.

Λt,i
(
ρ̂
)

:=
∫
dx|ψSi

(x)|2e−itγf(x)g(B̂)ρ̂eitγf(x)g(B̂). (168)

We are now ready to estimate (154).∑
i

p̄i

∥∥∥∥U1,t
(
ρ̂Si

⊗ ρ̂E
1
0
)

−
(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1

= (169)

∑
i

p̄i

[∥∥∥∥U1,t
(
ρ̂Si

⊗ ρ̂E
1
0
)

− 1
Ni

(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1
+ (170)

∥∥∥∥ 1
Ni

(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)
−
(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1

]
= (171)

∑
i

p̄i

[∥∥∥∥U1,t
(
ρ̂Si

⊗ρ̂E
1
0
)
− 1

Ni

(
I⊗P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ρ̂E
1
0
)(
I⊗P̂E1

t
i

)∥∥∥∥
1
+| 1

Ni
−1|
∥∥∥∥(I⊗P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ρ̂E
1
0
)(
I⊗P̂E1

t
i

)∥∥∥∥
1

]
=

(172)∑
i

p̄i

[∥∥∥∥U1,t
(
ρ̂Si

⊗ ρ̂E
1
0
)

− 1
Ni

(
I ⊗ P̂E1

t
i

)
U1,t

(
ρ̂Si

⊗ ρ̂E
1
0
)(
I ⊗ P̂E1

t
i

)∥∥∥∥
1

+ | 1
Ni

− 1|Ni

]
= (173)

∑
i

p̄i

[∥∥∥∥∥
(

Ût

(
|ψSi

⟩ ⊗ |ψE1
0
⟩
))(

Ût

(
|ψSi

⟩ ⊗ |ψE1
0
⟩
))†

− (174)

( I ⊗ P̂E1
t

i Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
)

√
Ni

|ψSi
⟩⊗|ψE1

0
⟩
)( I ⊗ P̂E1

t
i Ût

(
|ψSi⟩ ⊗ |ψE1

0
⟩
)

√
Ni

|ψSi
⟩⊗|ψE1

0
⟩
)†
∥∥∥∥∥

1

+|1−Ni|

]
=

(175)

∑
i

p̄i

[√√√√
1 −

∣∣∣∣ ⟨ψSi
| ⊗ ⟨ψE |Û†

t

(
I ⊗ P̂Ei

)
Ût|ψSi

⟩ ⊗ |ψE⟩
√

Ni

∣∣∣∣2 + |1 − Ni|

]
= (176)
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∑
i

p̄i

[√
1 −

∣∣∣∣ Ni√
Ni

∣∣∣∣2 + |1 − Ni|

]
= (177)

∑
i

p̄i

[√
1 − Ni + |1 − Ni|

]
≤ (178)

∑
i

p̄i

[
2
√

1 − Ni

]
= 2

∑
i

p̄i
√

1 − Ni ≤ (179)

2
√∑

i

p̄i
(
1 − Ni

)
= (180)

2
√∑

i

p̄i

(
1 − Tr

{
P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

})
(181)

Going from the (174) and (175) to (176) we have used the following result. Let, |ψ⟩ and |ϕ⟩ be
two pure state, then

∥ψ⟩⟨ϕ| − |ϕ⟩⟨ϕ|∥1 =
√

1 − |⟨ϕ|ψ⟩|2. (182)
Furthermore, going from (179) to (180) we have used Jensen’s inequality for concave functions. In
conclusion,

min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

−
∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)∥∥∥∥
1

≤ (183)

min
PVM

2
√∑

i

p̄i

(
1 − Tr

{
P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

})
(184)

Using Lemma 1 on the latter implies that

min
PVM

1
2∥ρ̂t − ρ̂CSBS,t∥1 = (185)

1
2 min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

− 1
Ntot

∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)∥∥∥∥
1

≤ (186)

2 min
PVM

√∑
i

p̄i

(
1 − Tr

{
P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

})
. (187)

Where
Ntot = Tr

{∑
i

(
P̂∆i

⊗ P̂E1
t

i

)
ρ̂t

(
P̂∆i

⊗ P̂E1
t

i

)}
=
∑
i

p̄iNi. (188)

Furthermore, it is important to note that the density operators Λt,i
(
ρ̂E

1
0
)

are not pure, we may
therefore not apply Theorem 1 right away. Before benefiting from Theorem 1 we must separate the
purity problem from that of the state discrimination problem. We do this by utilizing the following
bound. Defining ρ̂E

1
t

xi
:= e−itγf(xi)g(B̂)ρ̂E

1
0eitγf(xi)g(B̂), where xi :=

∫
x|ψSi(x)|2dx. Now,

1 − Tr
{

P̂E1
t

i Λt,i
(
ρ̂E

1
0
)
P̂E1

t
i

}
≤ (189)∥∥∥∥Λt,i

(
ρ̂E

1
0
)

− P̂E1
t

i Λt,i
(
ρ̂E

1
0
)
P̂E1

t
i

∥∥∥∥
1

= (190)∥∥∥∥Λt,i
(
ρ̂E

1
0
)

− ρ̂E
1
t

xi
+ ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i + P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i − P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

∥∥∥∥
1

≤ (191)∥∥∥∥Λt,i
(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

+
∥∥∥∥P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i − P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

∥∥∥∥
1

≤ (192)
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∥∥∥∥Λt,i
(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

+
∥∥∥∥Λt,i

(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

= (193)

2
∥∥∥∥Λt,i

(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

= (194)

With this result, we now bound (185).

2 min
PVM

√∑
i

p̄i

(
1 − Tr

{
P̂E1

t
i Λt,i

(
ρ̂E

1
0
)
P̂E1

t
i

})
≤ (195)

2 min
PVM

√∑
i

p̄i

(
2
∥∥∥∥Λt,i

(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+
∥∥∥∥ρ̂E

1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

)
≤ (196)

2
√

2
∑
i

p̄i

∥∥∥∥Λt,i
(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+ 2 min
PVM

√∑
i

p̄i

∥∥∥∥ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

)
(197)

We will write the latter result as a theorem.

Theorem 9. Diagonal terms for continuous variables:

min
PVM

1
2∥ρ̂t − ρ̂CSBS,t∥1 = (198)

1
2 min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

− 1
Ntot

∑
i

(
P̂∆i

⊗ P̂Ei

)
ρ̂t

(
P̂∆i

⊗ P̂Ei

)∥∥∥∥
1

≤ (199)

2
√

2
∑
i

p̄i

∥∥∥∥Λt,i
(
ρ̂E

1
0
)

− ρ̂E
1
t

xi

∥∥∥∥
1

+ 2 min
PVM

√∑
i

p̄i

∥∥∥∥ρ̂E
1
t

xi
− P̂E1

t
i ρ̂E

1
t

xi
P̂E1

t
i

∥∥∥∥
1

(200)

This can be easily extended to the case where we have more than one macro-environment. In
such a case Theorem 9 is replaced with the following.

Theorem 10. Diagonal terms for continuous variables N macro-environment case:

1
2 min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

− 1
Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (201)

√√√√2
∑
i

p̄i

∥∥∥∥∥Λt,i

(
NE⊗
k=1

ρ̂E
k
0

)
−

NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥
1

+ min
PVM

√√√√∑
i

p̄i

∥∥∥∥∥
NE⊗
k=1

ρ̂E
k
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

(202)

Estimating trace distances of the tensor products appearing in the Theorem 10 may be simplified
by employing the following lemma.

Lemma 4. Telescopic inequality:

∥∥ N⊗
k=1

Âk −
N⊗
k=1

B̂k
∥∥

1 ≤ (203)

N∑
j=1

( j−1∏
k=1

∥∥Âk
∥∥

1

)
×
∥∥Âj − B̂j

∥∥
1 ×

( N∏
k=j+1

∥∥B̂k
∥∥

1

)
(204)

Using Theorem 10 and Lemma 4 we obtain the following useful corollary.
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Corollary 2.

1
2 min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I
)

ρ̂t

(
P̂∆i

⊗ I
)

− 1
Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (205)

√√√√2
∑
i

p̄i

NE∑
k=1

∫
|ψSi

(x)|2
∥∥∥ρ̂E

k
t

x − ρ̂E
k
t

xi

∥∥∥
1
dx+ min

PVM

√√√√∑
i

p̄i

NE∑
k=1

∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥
1

(206)

Proof. First note that∥∥∥∥∥Λt,i

(
NE⊗
k=1

ρ̂E
k
0

)
−

NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥
1

=
∥∥∥∥∥
∫

|ψSi(x)|2
( NE⊗
k=1

ρ̂E
k
t

x

)
dx−

NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥
1

= (207)

∥∥∥∥∥
∫

|ψSi(x)|2
( NE⊗
k=1

ρ̂E
k
t

x −
NE⊗
k=1

ρ̂E
k
t

xi

)
dx

∥∥∥∥∥
1

≤ (208)

∫
|ψSi

(x)|2
∥∥∥∥∥
( NE⊗
k=1

ρ̂E
k
t

x −
NE⊗
k=1

ρ̂E
k
t

xi

)∥∥∥∥∥
1

dx. (209)

Using the latter, the proof follows directly from Lemma 4 and Theorem 9 by noting that

∥P̂Ek
t

t ρ̂E
k
t

x P̂Ek
t

t ∥1 ≤ 1 (210)

∥ρ̂E
k
t

x ∥1 ≤ 1 (211)
for all t, k and x.

4 Monitoring CV quantum systems
In the previous section, we have alluded to an analog for SBS states in the continuous variables
setting; in this section, we shall formalize SBS theory for continuous variables by developing the
notion of quantum monitoring apparatus. We have been studying multipartite systems where one
of the subsystems is the system being monitored while the rest are monitoring devices. i.e. think
of the situation where the system might be a single particle, an atom for instance. This atom may
be coupled, through some kind of amplification scheme, to a macroscopic object (the monitoring
device/devices) recording information by the position of a "meter" on a dial. The ensemble of the
system and monitoring device/devices will be referred to as a monitoring apparatus; we formalize
this notion below.

Definition 5. A quantum monitoring apparatus is a septuplet of data(
ρ̂S0 ,

NE⊗
k=1

ρ̂E
k
0 , γf(X̂) ⊗

∑
k

gk(B̂k), Σt, Λt, Et, T

)
where

• ρ̂s0 is the initial state of the system at t = 0.

•
⊗NE

k=1 ρ̂E
k
0 is the initial state of the device/devices (Ek0 is used as the superscript due to its

interpretation as the k-th environment).

• γf(X̂) ⊗
∑
k gk(B̂k) is the interaction between the system and the apparatus. We have chosen

von Neumann type interaction where all operators X̂ and B̂k are assumed to be either position
or momentum operators). f(x) and g(x) are arbitrary functions.
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• Σk,t are the resolution limits of the devices defined as Σk,t :=
(
FQ
[
ρ̂
Ek

t
x , tγgk(B̂k)]

)− 1
2

. Σt :=
maxk Σk,t is the resolution limit of the monitoring apparatus. We will utilize this parameter
to bound the size of the partitioning implemented on the state of the system.

• In order to define Λt, the system’s resolution, we must first discuss the representation for the
state ρ̂S0 in the X̂ basis. Here X̂ =

∫
x|x⟩⟨x|dx, we may express ρ̂S0 using Spec

{
X̂
}

as follows

ρ̂S0 =
∫ ∫

⟨x|ρ̂0|y⟩|x⟩⟨y|dxdy.

We may partition the integral using the resolution limit as a bound to how small our partitions
may be. Let {xi,t}i be a net in the real line at time t with the constraint |xi,t − xj,t| > |Σt|
for all (xi,t, xj,t), i ̸= j, that lie in the support of the kernel of ρ̂S0 . We create sets ∆i,t :=
(xi,t − σi,t

2 , xi,t + σi,t

2 ) centered at xi,t with σi,t ≥ Σt for all t such that |R\
⋃
i ∆i,t| = 0. We

may now write

ρ̂s0 =
∫ ∫

⟨x|ρ̂S0 |y⟩|x⟩⟨y|dxdy =
∑
ij

∫
∆i,t

∫
∆j,t

⟨x|ρ̂S0 |y⟩|x⟩⟨y|dxdy := (212)

∑
ij

√
pi,tpj,t|ψi,t⟩⟨ψj,t|.

where we have defined |ψi,t⟩ := 1√
pi,t

∫
∆i,t

√
⟨x|ρ̂S0 |x⟩|x⟩dx ( utilizing the separability of the

kernel ⟨x|ρ̂S0 |y⟩ and pi,t :=
∫

∆i,t
⟨x|ρ̂S0 |x⟩dx for normalization.

We now define the system’s resolution with respect to the net {xi,t} at time t.

Λt := min
i ̸=j;i,j∈{1,...,n}

∣∣∣∣⟨ψi,t|X̂|ψi,t⟩ − ⟨ψj,t|X̂|ψj,t⟩
∣∣∣∣.

• Et is a quantum map acting on the system. We will primarily use such maps to model deco-
herence in the system.

• T is the max time of some time domain of monitoring [0, T ). T may be ∞

Definition 6. δ-quantum instrument: A δ-quantum instrument will be defined as a Monitoring
Apparatus satisfying the following additional assumption.

F 2
(

ρ̂E
k
t

yi
, ρ̂E

k
t

yj

)
≤ δ,

for all yi ∈ ∆i,t and yj ∈ ∆j,t i ̸= j which are also in the support of ⟨x|ρ̂S0 |x⟩. Where of course
ρ̂E

k
t

xi
:= e−itγf(xi)gk(B̂k)ρ̂E

k
0 eitγf(xi)gk(B̂k).

A quantum apparatus will be called a δ-quantum instrument for all values of t such that the
above conditions are satisfied. We formalize this below and name this time domain the δ-quantum-
instrumentalization domain.

Tδ

(
ρ̂S0 ,

NE⊗
k=1

ρ̂E
k
0 , γf(X̂)⊗

∑
k

gk(B̂k), Σt, Λt, Et, T
)

:=
{
t < T

∣∣∣∣F(ρ̂E
k
t

yi
, ρ̂E

k
t

yj

)
≤ δ∀i, j, k ∋ i ̸= j

}
.

We will simply write Tδ when the elements of the model are understood.

Definition 7. non-disturbance: Consider the multipartite state

ρ̂t :=
(
e−itγf(X̂)⊗

∑
k
gk(B̂k)

)
Et
(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0
(
e−itγf(X̂)⊗

∑
k
gk(B̂k)

)
.
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We say that such a state is ε− non-disturbable at t > 0 if there exists a global PVM
{

P̂∆i,t
⊗⊗NE

k=1 P̂Ek
t

jk

}
i,j1,...,jNE

such that the successful event, i.e. the event corresponding to all of the subsys-

tems coinciding in their post-measurement readings has probability approximately one in the following
sense. ∥∥∥∥ρ̂t − 1

Ntot

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1
< ε

We will name the ε-non-disturbance time domain

Nε

(
ρ̂S0 ,

NE⊗
k=1

ρ̂E
k
0 , γf(X̂) ⊗

∑
k

gk(B̂k), Σt, Λt, Et, T

)
:=

{
t < T

∣∣∣∣∣
∥∥∥∥ρ̂t − 1

Ntot

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1
< ε

}
and write Nε when the model is understood.

Definition 8. Good quantum instruments(Haroche): A good quantum instrument has been defined
by Haroche in [35] as a finite-dimensional-system version of what we call a quantum instrument
whose parameters satisfy the following relationship.

γtΛt ≫
√
Tr
{
g2
k(B̂k)ρ̂Ek

0
}

− Tr
{
gk(B̂k)ρ̂Ek

0
}2
, ∀ k

What ≫ means will depend on a time scale and a desired tolerance. To add precision to Haroche’s
insightful discussion we will get rid of the ≫ symbols and make explicit what we want. Given a
chosen time Tε > 0 associated with the time domain for ε−non-disturbance and a desired tolerance
δ > 0, if for all T ≥ t ≥ Tε the parameters of the quantum monitoring apparatus, i.e. γ, Λt,√
Tr
{
g2
k(B̂k)ρ̂Ek

0
}

− Tr
{
gk(B̂k)ρ̂Ek

0
}2, Λt, and Σt are such that the respective quantum monitoring

apparatus is a δ−quantum instrument for a desired portion of the time domain, then the quantum
instrument in question is called a good quantum instrument.

Definition 9. εδ- spectrum broadcasting instrument: We will say that a δ−quantum instrument is
εδ-spectrum-broadcasting when it is ε-non-disturbable. The εδ-spectrum-broadcasting-time domain
will be denoted as

STεδ

(
ρ̂S0 ,

NE⊗
k=1

ρ̂E
k
0 , γf(X̂) ⊗

∑
k

gk(B̂k), Σt, Λt, Et, T

)
= Nε ∩ Tδ

The spectrum broadcasting instruments associated with tolerance parameters δ = 0 and ε = 0 are
known as spectrum broadcast structures (SBS) for the case where Spec{X̂} is a discrete set of isolated
points and will be called as continuous variables Spectrum Broadcast Structures (CVSBS) for the case
where Spec{X̂} has a purely continuous spectrum.

To add intuition to the above definitions, mainly the definition of a quantum monitoring appa-
ratus, a few comments are in order. Although no constraints are imposed on the initial state of the
system we would like to comment that the tools developed in this paper are not yet fully sharpened
to the extent that they may deal with a general state ρ̂S0 . Nevertheless, given that there is no result
indicating that a general quantum state may not be a system of some quantum measurement regime
type interaction that projects the spectrum of the system onto the environment we are compelled to
leave ρ̂S0 as a general state. The same argument goes for the environmental state; although we have
provided a bound for quantum state discrimination involving mixtures of mixed states in (1.2), this
treatment is only useful for mixtures

∑
i ρ̂i,t where ρ̂i =

∑
k ρ̂ik,t and all ρ̂ik,t are asymptotically

not overlapping for larger t. If more progress were to be made in the quantum state discrimination
theory for mixed states one would understand better the emergence of, or lack thereof, SBS struc-
tures coming from a more diverse group of initial states. We have focused on Hamiltonians of the
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type γf(X̂) ⊗ g(B̂) and although our examples only involved the case where f(x) = x and g(x), the
case for more general functions f(x) and g(x) is still very much contained within our framework.
However, computing the decoherence kernels that come from partial tracing in (11) become quite
challenging and one has to apply the theory of stationary phase approximations. We only interested
ourselves to the case where the only dynamics considered were the interaction dynamics, this is
the quantum measurement limit, where the interaction Hamiltonian has the form A⊗ B. It would
be interesting to adapt the framework presented in this paper to a more general case, perhaps one
in which there is intrinsic dynamics in the system and or environmental degrees of freedom. In
the definition of the quantum monitoring apparatus, we define our resolution/partitioning param-
eter/PVM for the system to be a maximization over all of the local Quantum Fisher Information
for each environment. One foresees the Quantum Fisher information to become quite challenging
with more general dynamics, how much more difficult would be a great thing to investigate in detail.
The resolution parameter depends on a chosen net over the reals. What net to choose in order to
partition the system’s density matrix will depend on the situation. For example, consider a multi
modal distribution ⟨x|ρ̂S0 |x⟩ := |ψ(x)|2 with n modes |ψ(x)|2i.e. has n critical numbers {xi}ni=1.
If the modes are separated enough and most of the support of each of the modes is smaller than
the resolution limit then in such a case we proceed as follows. Define ∆i,t := [xi − σ

2 , xi + σ
2 ) ,

with σ such that ∆i,t

⋂
∆i,t = ∅ and σ ≥ Σ ∀i ̸= j in some time domain t ∈ [0, T ) of interest (T

could potentially be ∞), where xi are the critical numbers of |ψ(x)|2 in increasing order and define
∆n+1,t := R\ ∪ni=1 ∆i,t. We then use this partitioning of the real line to partition the system’s
state and use this to compute the system’s resolution. Heuristically, this parameter computes the
smallest gap among the features we are trying to discern. Finally, the quantum maps Et we have
been studying have been kept quite general, with the exception of the examples.

5 Examples
5.1 System with finite-dimensional Hilbert Space CdS and all environ-

ments with Hilbert space L2(R).

Consider the monitoring apparatus of the type
(

ρ̂S0 ,
⊗NE

k=1 ρ̂E
k
0 , γX̂ ⊗

∑
k B̂k, Σt, Λt, Et, ∞

)
• ρ̂S0 =

∑dS

i,j=1 c
∗
i cj |i⟩⟨j|, where |i⟩ ∈ CdS and

∑dS

i=1 |ci|2. We use an orthonormal basis {|i⟩}dS
i=1

for C2 here.

• B̂ =
∑
k=1 B̂k, where all Bk moment operators.

• X̂ is the operator X̂ :=
∑dS

i=1 xi|i⟩⟨i|, diagonal with respect to the orthonormal basis {|i⟩}dS
i=1.

• f(x) = x and g(x) = x.

• We will assume the initial environmental state to be a tensor product of macro-environments.
Let ρ̂E0 =

⊗NE

k=1 ρ̂kE0
. We will assume that all of the ρ̂kE0

are identical. More precisely, we
will assume that these states have the following representation with respect to the generalized
eigenbasis of the operator conjugate to B̂k (i.e. the position operator in this case).

ρ̂kE0
=
∫ ∫

KE0(x, y)|x⟩⟨y|dxdy (213)

where KE0(x, y) := 1
σE0

√
2π exp −x2+y2

4σ2
E0

• The decoherence quantum map Et will be defined as follows.

Et
(
ρ̂S0

)
=

dS∑
i,j=1

c∗
i cje

−αt2(xi−xj)2
|i⟩⟨j| (214)
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• For the finite-dimensional Hilbert space we do not need a discretization parameter so here
there is no Σt.

• We assume a good quantum instrument regime with respect to the time regime t > t0, t0 :=√
8σ2

E0
ln(dS)

γ2Λ2 and a quantum-instrumentalization tolerance δ > 0. i.e.

F 2
(

ρ̂Et
xi
, ρ̂Et

xj

)
< δ, t0 < t, i ̸= j. (215)

Note that that for pure state ρ̂Et
xi

and ρ̂Et
xj

, F 2
(

ρ̂Et
xi
, ρ̂Et

xj

)
is equivalent to Tr

{
ρ̂Et
xi

ρ̂Et
xi

}
to

Given some ε > 0 our goal is to verify that such a monitoring apparatus enters the εδ−spectrum
broadcasting instrument regime and to estimate the tail of the εδ-spectrum-broadcasting-time-
domain. The main hurdle will be to estimate the trace distance defining the non-disturbance
criteria Definition 7. In this case

ρ̂t =
(
e−itγX̂⊗

∑NE

k=1
B̂k

)
Et
(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂kE0

(
eitγX̂⊗

∑NE

k=1
B̂k

)
= (216)

dS∑
i,j=1

c∗
i cje

−αt2(xi−xj)2
(
e−itγx̂i⊗

∑NE

k=1
B̂k

)
|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂kE0

(
eitγx̂j⊗

∑NE

k=1
B̂k

)
(217)

dS∑
i,j=1

c∗
i cje

−tαt2(xi−xj)2
|i⟩⟨j| ⊗

NE⊗
k=1

e−iγx̂iB̂k ρ̂kE0
e−iγx̂jB̂k = (218)

dS∑
i,j=1

c∗
i cje

−αt2(xi−xj)2
|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂
Ek

t
i,j (219)

We now estimate the corresponding trace distance in Definition 7.

min
PVM

∥∥∥∥ρ̂t − 1
Ntot

dS∑
i=1

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (220)

min
PVM

∥∥∥∥∑
i,j

(
|i⟩⟨i| ⊗ I

)
ρ̂t

(
|i⟩⟨i| ⊗ I

)
− 1

Ntot

dS∑
i=1

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤

(221)

min
PVM

∥∥∥∥∑
i

(
|i⟩⟨i| ⊗ I

)
ρ̂t

(
|i⟩⟨i| ⊗ I

)
− 1

Ntot

dS∑
i=1

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1
+

(222)∥∥∥∥∑
i ̸=j

(
|i⟩⟨i| ⊗ I

)
ρ̂t

(
|i⟩⟨i| ⊗ I

)∥∥∥∥
1

= (223)

min
PVM

∥∥∥∥∑
i=1

|ci|2|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k
t

xi
− 1

Ntot

∑
i=1

|ci||i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥
1
+ (224)

∥∥∥∥∑
i ̸=j

e−itαt2(xi−xj)2
|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂
Ek

t
i,j

∥∥∥∥
1

≤ (225)

min
PVM

dS∑
i=1

|ci|2
∥∥∥∥|i⟩⟨i|⊗

NE⊗
k=1

ρ̂E
k
t

xi
− 1

Ntot
|i⟩⟨i|⊗

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xxi
P̂Ek

t
i

∥∥∥∥
1
+
dS∑
i̸=j

e−αt2(xi−xj)2
∥∥∥∥|i⟩⟨j|⊗

NE⊗
k=1

ρ̂
Ek

t
i,j

∥∥∥∥
1

=

(226)
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min
PVM

dS∑
i=1

|ci|2
∥∥∥∥|i⟩⟨i| ⊗

( NE⊗
k=1

ρ̂E
k
t

xi
− 1

Ntot

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

)∥∥∥∥
1

+
dS∑
i ̸=j

e−αt2(xi−xj)2
= (227)

min
PVM

dS∑
i=1

|ci|2
∥∥∥∥ NE⊗
k=1

ρ̂
Ek

t
xi − 1

Ntot

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
dS∑
i̸=j

e−αt2(xi−xj)2
= (228)

min
PVM

dS∑
i=1

|ci|22
NE∑
k=1

∥∥∥∥ρ̂E
k
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
dS∑
i̸=j

e−αt2(xi−xj)2
= (229)

Going from (228) to (229) we have made use of Lemma 1 and Lemma 4. We have assumed
that the environmental terms are all the same, hence we will write ρ̂E

k
t

xi
as ρ̂Et

xi
for all k in order

to emphasize the lack of k dependence. Therefore

(229) = 2NE min
PVM

dS∑
i=1

|ci|2
∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥
1

+
dS∑
i ̸=j

e−αt2(xi−xj)2
(230)

wherefrom we may implement Theorem 1 in order to obtain a bound on (230). Before pro-
ceeding we note we are interested in the large t limit and may therefore pass to the regime
where

dSMdS
(t) := dS max

i ̸=j;{1,...,dS}

√
Tr
{

ρ̂Et
xi

ρ̂Et
xj

}
< 1. (231)

Using Theorem 6 and Corollary 1 it immediately follows that

(230) ≤ CdS ,NE

t

dS∑
i ̸=j

|ci|2
√
Tr
{

ρ̂Et
xi

ρ̂Et
xj

}
+

dS∑
i ̸=j

e−αt2(xi−xj)2
(232)

where we have defined CdS ,NE

t := NE

dS

(
1+dSMdS

(t)

)dS −1

(
1−dSMdS

(t)

)dS −1 .

For the model at hand, it can be easily shown that√
Tr
{

ρ̂Et
xi

ρ̂Et
xj

}
= exp −γ2t2(xi − xj)2

8σ2
E0

. (233)

With the latter at hand, we may track the convergence explicitly.

(232) = NE

(
1 + dS exp −γ2t2Λ2

8σ2
E0

)dS−1

(
1 − dS exp −γ2t2Λ2

8σ2
E0

)dS−1 d
2
S exp −γ2t2Λ2

8σ2
E0

+ dS(dS − 1)e−αt2Λ2
(234)

Now, let ε > 0 and define t0 :=
√

8σ2
E0

ln(dS)
γ2Λ2 . One can easily show that for

t > Tε := max
{
t0,

√√√√8σ2
E0

ln
( 2dSC

dS ,NE
t0
ε

)
γ2Λ2 ,

√
8σ2

E0
ln
( 2dS(dS−1)

ε

)
αΛ2

}
(235)

we have (232) < ε, therefore making this set of values of t a subset of the ε-non-disturbance

time domain Nε
(

ρ̂S0 ,
⊗NE

k=1 ρ̂E
k
0 , γX̂ ⊗

∑NE

k=1 B̂k, Λ, Et, ∞
)

. Furthermore, from the good

quantum instrument assumptions (215) we know that

Tr
{

ρ̂Et
xi

ρ̂Et
xj

}
< δ, t0 < t. (236)
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for i ̸= j. Given that e
−γ2t2Λ2

8σ2
E0 is monotonically decreasing w.r.t to t it follows that since

Tε ≥ t0

Tr
{

ρ̂Et
xi

ρ̂Et
xj

}
≤ exp −γ2T 2

ε Λ2

8σ2
E0

< δ (237)

for all i ̸= j. This means that the time domains t > Tε where Tε ≥ t0 still fall under the good
monitoring apparatus regime (215). The time domain t > Tε is a subset of the δ-quantum-

instrumentalization domain Tδ

(
ρ̂S0 ,

⊗NE

k=1 ρ̂E
k
0 , γX̂ ⊗

∑NE

k=1 B̂k, Λ, Et, ∞
)

. We therefore

conclude that the quantum apparatus
(

ρ̂S0 ,
⊗NE

k=1 ρ̂E
k
0 , γX̂ ⊗

∑NE

k=1 B̂k, Λ, Et, ∞
)

is εδ
spectrum broadcasting for t > Tε.
Note that for smaller desired values of ε the ε-non-disturbance time domain t > Tε shifts to the
right due to greater values of Tε. These greater values of Tε, in turn, accommodate for smaller
values of exp −γ2T 2

ε Λ2

8σ2
E0

leading to more refined quantum-instrumentalization via (237). We,
therefore, conclude that in the limit t → ∞ this family of apparatuses in question converges
to a spectrum broadcast structure.

5.2 Continuous Variables. The Hilbert spaces of the system and envi-
ronments respectively will all be L2(R).

Let us consider the quantum monitoring apparatus
(

ρ̂S0 ,
⊗NE

k=1 ρ̂E
k
0 , γX̂ ⊗ B̂, Σt, Λt, Et, T

)
,

where the elements describing the monitoring apparatus are now the following.

• ρ̂s0 is the initial systemic state with corresponding pure state representation (Ns0 = 2)

|ψs0⟩ = c1|ϕ1⟩ + c2|ϕ2⟩ (|c1|2 + |c2|2 = 1) (238)

in function form, this is equivalently

ψs0(x) = c1ϕ1(x) + c2ϕ2(x) (239)

where each function ϕi(x) ∈ C∞
c (R) with respective supports Ω1 := supp(ϕ1) and Ω2 :=

supp(ϕ2). Furthermore, we will assume that the functions {ϕi(x)}2
i=1 have disjoint supports.

• We will use the same environmental setting as in the previous example, namely (213).

• B̂ =
∑
k=1 B̂k, where all of the operators B̂ are momentum operators

• X̂ is a position operator.

• The decoherence quantum map Et will be defined as follows.

Et
(
ρ̂S0

)
=
∫ ∫

ψ∗
s0

(x)ψs0(y)e
− γ2t2(x−y)2

8σ2
E0 |x⟩⟨y|dxdy (240)

where we have expressed the operator Et
(
ρ̂S0

)
in the position basis.

• We will use the same partitioning parameter σ for all of the ∆i,t. We will assume that σ ≥
max{Σt, |Ω1|, |Ω2|}. We will construct a partition in the following way.∆i := (xi − σ

2 , xi + σ
2 ),

x1 is the midpoint of Ω1 and x2 the midpoint of Ω2 and we assume that x1 < x2. Note that
in this case, the partition to be used will be time-independent, this further implies that Λ will
also be time-independent. The rest of the sets ∆i i ̸= 1, 2 will be irrelevant since the respective
terms of the integral (212) will be zero.
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• We finally assume the good quantum instrument regime. i.e. for the parameters of the quantum
monitoring apparatus at hand.

Our goal is to verify that such a quantum monitoring apparatus enters the εδ−spectrum-
broadcasting-instrument regime for an arbitrary ε > 0 and δ > 0. In this case the hurdle of es-
timating the trace distance defining the non-disturbance criteria (7) is significantly more challenging
than it was in the previous section. Here,

min
PVM

∥∥∥∥ρ̂t − 1
Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (241)

min
PVM

∥∥∥∥∑
i,j

(
P̂∆i

⊗ I

)
ρ̂t

(
P̂∆j

⊗ I

)
− 1

Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i

⊗
N⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (242)

min
PVM

∥∥∥∥∑
i

(
P̂∆i

⊗ I

)
ρ̂t

(
P̂∆i

⊗ I

)
− 1

Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1
+ (243)

∥∥∥∥∑
i

∑
j;j ̸=i

(
P̂∆i

⊗ I

)
ρ̂t

(
P̂∆j

⊗ I

)∥∥∥∥
1

≤ (244)
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√
2NE

∑
i

p̄i

∫
|ψsi

(x)|2
∥∥∥ρ̂Et

x − ρ̂Et
xi

∥∥∥
1
dx+ min

PVMPEi

√
NE

∑
i

p̄i

∥∥∥ρ̂Et
xi

− P̂Et
i ρ̂Et

xi
P̂Et
i

∥∥∥
1

+ (245)

∑
i

∑
j;j ̸=i

∥P̂∆i
Et
(
ρ̂S0

)
P̂∆j

∥1 (246)

where we have used Corollary 2 and equations (113) through (118) in the final term of the above
sequence of inequalities. We also made use of the fact that all of the environmental degrees of
freedom are the same and all B̂k are the same. To accentuate the latter we wrote ρ̂Et

x = ρ̂E
k
t

x

and P̂Et
i = P̂Ek

t
i for all k to accentuate the k independence. We remind the reader that the term

p̄i :=
∫

∆i
|ψS0(x)|2dx.

We will now treat each one of the terms in (245) and (246) independently. We will begin with
the sum pertaining to the non-diagonal terms, i.e.

∑
i

∑
j;j ̸=i ∥P̂∆i

Et
(
ρ̂S0

)
P̂∆j

∥1. Sections 3.1 and
3.2 tell us how to bound such a trace distance. In this case, the corresponding off-diagonal terms
will be bounded by using the Kupsch-like bounds derived in section (3.1).

∑
i

∑
j;j ̸=i

∥∥∥P̂∆i
Et
(
ρ̂S0

)
P̂∆j

∥∥∥
1

≤
∑
i

∑
j;j ̸=i

sup
(x,y)∈∆i×∆j

(
2
∣∣ exp −γ2t2(x− y)2

8σ2
E0

∣∣+σ∣∣∂y exp −γ2t2(x− y)2

8σ2
E0

∣∣) =

(247)∑
i

∑
j;j ̸=i

sup
(x,y)∈∆i×∆j

(
2 exp −γ2t2(x− y)2

8σ2
E0

+ γ2t2σ

8σ2
E0

|x− y| exp −γ2t2(x− y)2

8σ2
E0

)
. (248)

For this case Ns0 = 2 the supports of the ϕi are not overlapping, |∆i| ≥ |Ωi|, i = 1, 2. Therefore,

(248) = 2 sup
(x,y)∈∆1×∆2

(
2 exp −γ2t2(x− y)2

8σ2
E0

+ γ2t2σ

4σ2
E0

|x− y| exp −γ2t2(x− y)2

8σ2
E0

)
≤ (249)

4 exp −γ2t2Λ̄2
1

4σ2
E0

(
1 + γ2t2Λ̄2σ

8σ2
E0

)
(250)

where (249) is so because the terms we are taking the supremum over are symmetric with respect
to exchanges of x with y and vice-versa. In (250), Λ̄1 := min

{
∆2
}

− max
{

∆1
}

while Λ̄2 :=
max

{
∆2
}

− min
{

∆1
}

.
Let us now concentrate on the diagonal terms. We will begin with the optimization term.

min
PVM

√√√√NE

NS0∑
i=1

p̄i

∥∥∥ρ̂Et
xi

− P̂Et
i ρ̂Et

xi
P̂Et
i

∥∥∥
1

= (251)

min
PVM

√√√√NE

2∑
i=1

p̄i

∥∥∥ρ̂Et
xi

− P̂Et
i ρ̂Et

xi
P̂Et
i

∥∥∥
1

≤ (252)

√
2NETr{ρ̂Et

x1
ρ̂Et
x2

} = (253)√
2NE exp −γ2t2(x1 − x2)2

8σ2
E0

=
√

2NE exp −γ2t2(x1 − x2)2

16σ2
E0

≤
√

2NE exp −γ2t2Λ̄2
1

16σ2
E0

(254)

Here we have used Theorem 1, which for the dS = 2 case is simple to compute. For dS much larger
we would have resorted to using Corollary 1. Finally, we bound the remaining diagonal term. The
purity error of the states

∫
|ϕi(x)|2ρ̂Et

x .√√√√2NE
2∑
i=1

p̄i

∫
|ϕi(x)|2

∥∥∥ρ̂Et
x − ρ̂Et

xi

∥∥∥
1
dx ≤ (255)
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√√√√2NE
2∑
i=1

p̄i

∫
|ϕi(x)|2

√
1 − Tr{ρ̂Et

x ρ̂Et
xi

}dx = (256)

√√√√2NE
2∑
i=1

p̄i

∫
|ϕi(x)|2

√
1 − exp −γ2t2(x− xi)2

8σ2
E0

dx ≤

√√√√2NE

√
1 − exp −γ2t2λ2

8σ2
E0

(257)

with λ defined as maxi=1,2 |Ωi|.
With all of the terms now estimated we recapitulate with the bound below.

min
PVM

∥∥∥∥ρ̂t − 1
Ntot

∑
i

(
P̂∆i

⊗
NE⊗
k=1

P̂EK
t

i

)
ρ̂t

(
P̂∆i

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (258)

4 exp −γ2t2Λ̄2
1

8σ2
E0

(
1 + γ2t2σΛ̄2

4σ2
E0

)
+
√

2NE exp −γ2t2Λ̄2
1

16σ2
E0

+

√√√√2NE

√
1 − exp −γ2t2λ2

8σ2
E0

(259)

The parameters Λ̄1 and Λ̄2 have the following bounds.

Λ̄1 ≥ Λ − 2λ, while Λ̄2 ≤ Λ + λ (260)

Proof. Let µ1 :=
∫

Ω1
x|ϕ(x)|2dx, and µ2 :=

∫
Ω2
x|ϕ(x)|2dx. Then,

Λ̄1 = min
{

∆2
}

− max
{

∆1
}

≥ (261)

min
{

∆2
}

− max
{

∆1
}

−
((

max
{

∆1
}

− µ1

)
+
(
µ2 − min

{
∆2
}))

≥ (262)

min
{

∆2
}

− max
{

∆1
}

+
(
λ+ λ

)
(263)

This gives us Λ̄1 ≥ Λ − 2λ. To get Λ̄2 ≤ Λ + λ one implements the same simple techniques.

Hence,

(259) ≤ 4 exp
−γ2t2Λ2(1 − 2 λΛ )2

8σ2
E0

(
1 +

γ2t2σΛ(1 + 2 λΛ )
4σ2

E0

)
+ (264)

√
2NE exp

−γ2t2Λ2(1 − 2 λΛ )2

16σ2
E0

+

√√√√2NE

√
1 − exp −γ2t2λ2

8σ2
E0

(265)

To further analyze the bound (264),(265) with more ease we introduce the variable τ := γtΛ
σE0

. The
latter is now written and bounded as follows.

(259) ≤ 4 exp
−τ2(1 − 2 λΛ )2

8

(
1 +

τ2σ(1 + 2 λΛ )
4Λ

)
+ (266)

√
2NE exp

−τ2(1 − 2 λΛ )2

16 +

√
2NE

√
1 − exp −τ2λ2

8Λ2 ≤ (267)

4e
−τ2(1− 2σ

Λ )2

8

(
1 +

τ2σ(1 + 2σ
Λ )

4Λ

)
+ (268)

√
2NEe

−τ2(1− 2σ
Λ )2

16 +

√
2NE

√
1 − e

−τ2σ2
8Λ2 ≤ (269)

e
−τ2(1− 2σ

Λ )2

16

(
4 +

√
2NE + τ2σ

Λ
(
1 + 2σ

Λ
))

+

√
2NE

√
1 − e

−τ2σ2
8Λ2 ≤ (270)
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e
−τ2(1− 2σ

Λ )2

16

(
6
√
NE + 3τ2σ

Λ

)
+

√
2NE

√
1 − e

−τ2σ2
8Λ2 = (271)

6
√
NEe

−τ2(1− 2σ
Λ )2

16

(
1 + τ2σ

2Λ
√
NE

)
+

√
2NE

√
1 − e

−τ2σ2
8Λ2 ≤ (272)

6
√
NEe

−τ2(1− 2σ
Λ )2

16 e
τ2σ

2Λ
√

NE +

√
2NE

√
1 − e

−τ2σ2
8Λ2 = (273)

6
√
NEe

−τ2
(

( 1
4 − σ

2Λ )2− σ

2Λ
√

NE

)
+

√
2NE

√
1 − e

−τ2σ2
8Λ2 . (274)

Now, take 1 > δ > 0 and 1 > ϵ > 0. For our quantum monitoring apparatus to be a δ- quantum
instrument (6) we require that

Tr
{

ρ̂Et
x1

ρ̂Et
x2

}
≤ δ, ∀ (x1, x2) ∈ Ω1 × Ω2. (275)

It can easily be shown that this holds for

τ ≥
√

−8 ln δ
(1 − 2σ

Λ )2 . (276)

Furthermore, if we would like the quantum monitoring apparatus to be ε-non-disturbable as well,
then the following must also be satisfied.

6
√
NEe

−τ2
(

( 1
4 − σ

2Λ )2− σ

2
√

NE Λ

)
+

√
2NE

√
1 − e

−τ2σ2
8Λ2 ≤ ε (277)

The latter implies the following two bounds on τ .

τ ≤ Λ
σ

√
−8 ln

(
1 −

( ε2

8NE

)2)
(278)

τ ≥

√√√√ − ln ε
12

√
NE(

( 1
4 − σ

Λ )2 − σ
2Λ

√
NE

) (279)

Changing back to τ = γtΛ
σE0

the inequalities (276)(278)(279) have the following form.

t ≥ σE0

γΛ

√
−8 ln δ

(1 − 2σ
Λ )2 . (280)

t ≥ σE0

γΛ

√√√√ − ln ε
12

√
NE(

( 1
4 − σ

Λ )2 − σ
2Λ

√
NE

) (281)

t ≤
(Λ
σ

)σE0

γΛ

√
−8 ln

(
1 −

( ε2

8NE

)2)
(282)

In general, such a system of inequalities will not be satisfied. For the above system of inequalities
to hold, the following inequality must be satisfied.

max
{ √

−8 ln δ
(1− 2σ

Λ )2√
−8 ln

(
1 −

(
ε2

8NE

)2) ,
√√√√ − ln ε

12
√

NE(
( 1

4 − σ
Λ )2− σ

2Λ
√

NE

)
√

−8 ln
(

1 −
(

ε2

8NE

)2)
}

≤ Λ
σ

(283)
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If (283) is satisfied for some prescribed Λ and σ, and if Λ
σ is large enough so that

(Λ
σ

)σE0

γΛ

√
−8 ln

(
1 −

( ε2

8NE

)2)
≥ T (284)

with σE0
γΛ small, then our quantum monitoring apparatus is a εδ-spectrum broadcasting-instrument.

Furthermore, the associated εδ-spectrum-broadcasting-time STεδ is then given by the inequalities
(280)(281)(282).

6 Future work
∂tρS(t) = −i

2 ∆ωa[σz, ρS(t)] + γD[σ−]ρS(t). (285)

this concludes our work. Equation (285) is the master equaiton of the two-level atom spontaneous
emission model.
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