Open Quantum Systems

Alberto Acevedo

UofA
3/3/2020

Introduction

- Quantum coherence
- Ammonia Molecule
- Spin Chains
- Spontaneous emission and the Born-Markov Master equation
- Collisional Decoherence
- DFS

The Ammonia Molecule

Hamiltonian
$H \rightarrow\left(\begin{array}{cc}E_{0} & -\epsilon \\ -\epsilon & E_{0}\end{array}\right)=\left(\begin{array}{cc}\langle 1| H|1\rangle & \langle 1| H|2\rangle \\ \langle 2| H|1\rangle & \langle 2| H|2\rangle\end{array}\right)$
Let us solve SE for $|\psi(0)\rangle=|1\rangle$

- $i \hbar \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle$
- $|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- $U(t)=e^{\frac{-i H t}{\hbar}}$.

Ammonia Molecule continued
Solution

$$
|\psi(t)\rangle=e^{\frac{-i E_{0} t}{h}}\left(\cos \left(\frac{\epsilon t}{\hbar}\right)|1\rangle+i \sin \left(\frac{\epsilon t}{\hbar}\right)|2\rangle\right)
$$

State Matrix

$$
\rho(t)=|\psi(t)\rangle\langle\psi(t)| \rightarrow\left(\begin{array}{cc}
\cos ^{2}\left(\frac{\epsilon t}{\hbar}\right) & -\cos \left(\frac{\epsilon t}{\hbar}\right) \sin \left(\frac{\epsilon t}{\hbar}\right) \\
i \sin \left(\frac{\epsilon t}{\hbar}\right) \cos (\epsilon t \hbar) & \sin ^{2}\left(\frac{\epsilon t}{\hbar}\right)
\end{array}\right)
$$

Time evolution of $\operatorname{Tr}\left[\rho(t) \sigma_{z}\right]$

2 spin system

- $H=-\frac{1}{2}\left[h_{0} \sigma_{z}^{0}+h_{1} \sigma_{z}^{1}\right]-\frac{1}{2}\left[J_{x}^{0} \sigma_{x}^{0} \sigma_{x}^{1}+J_{y}^{0} \sigma_{y}^{0} \sigma_{y}^{1}+J_{z}^{0} \sigma_{z}^{0} \sigma_{z}^{1}\right]$
- $H \in B\left(\mathbb{C}^{\otimes 4}\right)$
- Let $N=10$ and $|\psi(0)\rangle=|10\rangle \in \mathbb{C}^{\otimes 4}$

Spin chains

- $\mathrm{H}=$

$$
-\frac{1}{2} \sum_{n}^{N} h_{n} \sigma_{z}^{n}-\frac{1}{2} \sum_{n}^{N-1}\left[J_{x}^{n} \sigma_{x}^{n} \sigma_{x}^{n+1}+J_{y}^{n} \sigma_{y}^{n} \sigma_{y}^{n+1}+J_{z}^{n} \sigma_{z}^{n} \sigma_{z}^{n+1}\right]
$$

- $H \in B\left(\mathbb{C}^{\otimes 2 N}\right)$
- Solving SE here is hard. Let's use qutip!
- Let $N=10$ and $|\psi(0)\rangle=|1000000000\rangle \in \mathbb{C}^{\otimes 2 N}$

More on spin chains

Stronger coupling parameters

Spin chain

Central spin sysem

- $\mathrm{H}=$

$$
-\frac{1}{2} \sum_{n}^{N} h_{n} \sigma_{z}^{n}-\frac{1}{2} \sum_{n}^{N-1}\left[J_{x}^{n} \sigma_{x}^{0} \sigma_{x}^{n+1}+J_{y}^{n} \sigma_{y}^{0} \sigma_{y}^{n+1}+J_{z}^{n} \sigma_{z}^{0} \sigma_{z}^{n+1}\right]
$$

- $H \in B\left(\mathbb{C}^{\otimes 2 N}\right)$
- Again, solving SE here is hard. Let's use qutip!
- Let $N=10$ and $|\psi(0)\rangle=|1000000000\rangle \in \mathbb{C}^{\otimes 2 N}$

Quantum open systems

- Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$
- $\left|\psi_{S E}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}$
- Dynamics provided by Schrödinger's equation. $i \hbar \partial_{t}\left|\psi_{S E}(t)\right\rangle=H\left|\psi_{S E}(t)\right\rangle$ where $H=H_{S}+H_{E}+H_{l}$.
- $\left|\psi_{S E}(t)\right\rangle=e^{-\frac{i t}{\hbar} H}$. Just like before. We can attain the reduced dynamics by partial tracing over the degrees of freedom pertaining to the environment. i.e.

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right.
$$

Partial Trace

Definition
$\operatorname{Tr}_{E}\{ \}: T\left(\mathscr{H}_{S} \otimes \mathscr{H}_{E}\right) \rightarrow T\left(\mathscr{H}_{S}\right)$

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right\}:=\sum_{k}\left\langle\phi_{k} \mid \psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t) \mid \phi_{k}\right\rangle,
$$

where $\left\{\left|\phi_{k}\right\rangle\right\}_{k}$ is an ONB for \mathscr{H}_{E}.

- Let use make sure that this map is the correct one.

$$
\begin{gathered}
A_{S} \rightarrow A_{S} \otimes I_{E} \\
\left\langle A_{S} \otimes I_{E}\right\rangle=\operatorname{Tr}\left\{\rho_{S E}\left(A_{S} \otimes I_{E}\right)\right\}
\end{gathered}
$$

But it can be shown that

$$
\operatorname{Tr}\left\{\rho_{S E}\left(A_{S} \otimes I_{E}\right)\right\}=\operatorname{Tr}\left\{\rho_{S} A_{S}\right\}!!!!!.
$$

Partial trace

- There you have it, all we need to do is compute

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right| .\right.
$$

- This is generally intractable and approximations must be made.
- Let's switch to the equivalent approach, Von neumann equation is starting point.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right] \tag{1}
\end{equation*}
$$

We can attain the reduced dynamics by partial trace.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{S E}, \rho_{S E}(t)\right]\right\} \tag{2}
\end{equation*}
$$

Born-Markov approximation

Equivalently.

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{S E}, \rho_{S}(0) \otimes \rho_{E}(0)\right]\right\}+ \\
& +\frac{i^{2}}{\hbar^{2}} \int_{0}^{t} d t_{1} \operatorname{Tr}_{E}\left\{\left[H_{S E},\left[H_{S E}, \rho_{S}\left(t_{1}\right) \otimes \rho_{E}(0)\right]\right]\right\}
\end{aligned}
$$

- Here we already begin to make approximations. We have assumed that $\rho_{S E}(0)=\rho_{S}(0) \otimes \rho_{E}(0)$, separable. This is the Born approximation.
- We have also assumed that the environment is unchanged by the system S. Unfortunately this too is intractable if we are not able to make the approximation $\rho_{S}\left(t_{1}\right) \rightarrow \rho_{S}(t)$. This makes the integro differential equation above more manageable.

two-level system in bath

- Let E be a large, with respect to the system, bosonic bath and S be a two-level system. Assuming that the two level system is in the excited state at $t=0$ we can use the Born-Markov approximation to arrive at the following equation.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{S}(t)=\frac{-i}{2}\left(\omega_{a}+\Delta \omega_{a}\right)\left[\sigma_{z}, \rho_{S}(t)\right]+\gamma D\left[\sigma_{-}\right] \rho_{S}(t) \tag{3}
\end{equation*}
$$

- $D\left[\sigma_{-}\right] \rho=\sigma_{-} \rho \sigma_{+}-\frac{1}{2}\left(\sigma_{+} \sigma_{-} \rho+\rho \sigma_{+} \sigma_{-}\right)$This is know as the Born - Markov master equation. We now use it to solve for the reduced density matrix.
- First assume that $\rho_{S}(t)=\frac{1}{2}\left[I_{2}+x(t) \sigma_{x}+y(t) \sigma_{y}+z(t) \sigma_{z}\right]$, we also constraint the scalar functions to $\operatorname{Tr}_{S}\left\{\rho_{S}(t)\right\}=1$.
- $\frac{\partial}{\partial t} z(t)=\operatorname{Tr}\left\{\sigma_{z} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$
- $\frac{\partial}{\partial t} y(t)=\operatorname{Tr}\left\{\sigma_{y} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$
- $\frac{\partial}{\partial t} x(t)=\operatorname{Tr}\left\{\sigma_{x} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$

Using the Lindblad Master equation to substitute for $\frac{\partial}{\partial t} \rho_{S}(t)$ these equations become

- $\frac{\partial}{\partial t} z(t)=-\gamma(z(t)+1)$
- $\frac{\partial}{\partial t} y(t)=\left(\Delta \omega_{a}\right) x(t)-\frac{\gamma}{2} y(t)$
- $\frac{\partial}{\partial t} x(t)=-\left(\Delta \omega_{a}\right) y(t)-\frac{\gamma}{2} x(t)$
with solutions
- $z(t)=2 e^{-\gamma t}-1$
- $y(t)=-e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta \omega_{a}\right) t\right)$
- $x(t)=e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta \omega_{a}\right) t\right)$.

Continued

Collisional Decoherence

Set up

Let $\mathscr{H}=\mathscr{H}_{A} \otimes \mathscr{H}_{B}$ be a product Hilbert space.

- $\operatorname{dim}\left[\mathscr{H}_{A}\right]=N$
- $\operatorname{dim}\left[\mathscr{H}_{B}\right]=M$
- $\operatorname{dim}[\mathscr{H}]=N M$.

Take $H \in \mathscr{B}(\mathscr{H})=\mathscr{B}\left(\mathscr{H}_{A} \otimes \mathscr{H}_{B}\right)$ with the following form.

$$
\begin{equation*}
H=\sum_{k} S_{k} \otimes E_{k} \tag{4}
\end{equation*}
$$

- $S_{k} \in \mathscr{B}\left(\mathscr{H}_{A}\right)$
- $E_{K} \in \mathscr{B}\left(\mathscr{H}_{B}\right)$
- $S_{k}=S_{k}^{\dagger}$ and $E_{k}=E_{k}^{\dagger}$, self adjoint.

Recognize the following equation? $i \frac{\partial}{\partial t} \psi_{t}=H \psi_{t}, \psi_{t} \in \mathscr{H}$.

Set Up part 2

The solution to SE in the time independent case is just

$$
\begin{equation*}
\psi_{t}=e^{\frac{-i t}{\hbar} \sum_{k} S_{k} \otimes E_{k}} \psi_{0} \tag{5}
\end{equation*}
$$

Assuming that $\psi_{0}=\left[\sum_{l} c_{l} \phi_{l}\right] \otimes \eta_{0}$,

- $\left\{\phi_{i}\right\}_{i}$ form an ONB for \mathscr{H}_{A}.
- $\eta_{0} \in \mathscr{H}_{B}$

$$
\begin{equation*}
\psi_{t}=e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{j}}\left(\left[\sum_{l} c_{l} \phi_{l}\right] \otimes \eta_{0}\right) \tag{6}
\end{equation*}
$$

Let us move to the state matrix representation.

- $\rho_{t}=\psi_{t} \psi_{t}^{\dagger}=$
$e^{\frac{-i t}{\hbar} \sum_{k} S_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*} \phi_{l} \phi_{m}^{\dagger}\right] \otimes \eta_{0} \eta_{0}^{\dagger}\right) e^{i t} \sum_{k} s_{k} \otimes E_{k}$

Decoherence

Partial tracing over the degrees of freedom pertaining to \mathscr{H}_{B} we get the \mathscr{H}_{A} local non unitary equation.

$$
\begin{equation*}
\rho_{S}(t)=\operatorname{Tr}_{B}\left[e^{\frac{-i t}{\hbar} \sum_{k} S_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*} \phi_{l} \phi_{m}^{\dagger}\right] \otimes \eta_{0} \eta_{0}^{\dagger}\right) e^{\frac{i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\right] \tag{7}
\end{equation*}
$$

This partial trace in general reduces to some state of the form,

$$
\rho_{S}(t)=\sum_{l, m} a_{l}(t) a_{m}^{*}(t) \phi_{l} \phi_{m}^{\dagger}
$$

with $a_{l}(t) a_{m}^{*}(t) \rightarrow 0$ as $t \rightarrow \infty$ for $l \neq m$.

Question

From what space $\mathscr{H}_{C} \subset \mathscr{H}_{A}$ may we construct sperpositions $\sum_{l} c_{l} \phi_{l}$ that are immune to decoherence? i.e.
$\operatorname{Tr}_{B}\left[e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*} \phi_{l} \phi_{m}^{\dagger}\right] \otimes \eta_{0} \eta_{0}^{\dagger}\right) e^{i \frac{i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\right]=\sum_{l, m} c_{l} c_{m}^{*} \phi_{l} \phi_{m}^{\dagger}$
Need $\left\{\phi_{i}\right\}_{i}$ ONB, with the exotic property of forming a degenerate eigen space for all S_{k}.

$$
\begin{gather*}
\psi_{t}=e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left[\sum_{l} c_{l} \phi_{l}\right] \otimes \eta_{0}= \tag{9}\\
=\left[\sum_{l} c_{l} e^{\frac{-i t}{\hbar} \sum_{k} \lambda_{k} I_{A} \otimes E_{k}} \phi_{l}\right] \otimes \eta_{0}=\sum_{l} c_{l} \phi_{l} \otimes\left[e^{\frac{-i t}{\hbar} \sum_{k} \lambda_{k} I_{A} \otimes E_{k}} \eta_{0}\right] \tag{10}
\end{gather*}
$$

Partial Trace

Let us now partial trace the corresponding density matrix.

$$
\rho_{S}(t)=\sum_{l, m} c_{l} c_{m}^{*} \phi_{l} \phi_{m}^{\dagger} \operatorname{Tr}_{B}\left[e^{\frac{-i t}{\hbar} \sum_{k} \lambda_{k} I_{A} \otimes E_{k}} \eta_{0} \eta_{0}^{\dagger} e^{\frac{i t}{\hbar} \sum_{k} \lambda_{k} I_{A} \otimes E_{k}}\right]
$$

The trace term is just one since density matricese have trace one under unitary evolution.

$$
\rho_{S}(t)=\sum_{l, m} c_{l} c_{m}^{*}
$$

.:)

Example, symmetric dephasing

Consider a system of N qubits coupled to its environment in the follwoing way.

$$
\begin{array}{r}
|0\rangle_{j} \rightarrow|0\rangle_{j} \\
|1\rangle_{j} \rightarrow e^{i \phi}|1\rangle_{j} \tag{12}
\end{array}
$$

j indexes over all qubits. Let the initial state be

$$
|\psi\rangle_{0}=\bigotimes_{j=1}^{N}\left(a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j}\right)
$$

The dephasing process evolves our system into the following state.

$$
|\psi\rangle_{\phi}=\bigotimes_{j=1}^{N}\left(a_{j}|0\rangle_{j}+b_{j} e^{i \phi}|1\rangle_{j}\right)
$$

with a probability p_{ϕ}

Example continued

The ensemble $\left\{|\psi\rangle_{\phi}, p_{\phi}\right\}$ can be expressed equivalently as a mixed state.

$$
\begin{align*}
\rho & =\int p_{\phi}|\psi\rangle_{\phi}\langle\psi| d \phi \\
|\psi\rangle_{\phi}\langle\psi| & \rightarrow\left[\begin{array}{cc}
\left|a_{j}\right|^{2} & a_{j} b_{j}^{*} e^{-i \phi} \\
a_{j}^{*} b_{j} e^{i \phi} & |b|^{2}
\end{array}\right] . \tag{13}
\end{align*}
$$

For a gaussian distribution $p_{\phi}=\left(4 \pi \alpha^{\frac{-1}{2}}\right) e^{\frac{p h i^{2}}{4 \alpha}}$ we have

$$
\left[\begin{array}{cc}
\left|a_{j}\right|^{2} & a_{j} b_{j}^{*} e^{-\alpha} \tag{14}\\
a_{j}^{*} b_{j} e^{-\alpha} & |b|^{2}
\end{array}\right] .
$$

There is indeed decoherence present, lets look for a DFS.

Example continued

For starters lets consider the case $N=2$. The dephasing for each of the constituents of the corresponding Hilbert space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is summarized by the following.

$$
\begin{align*}
|00\rangle & \rightarrow|00\rangle \tag{15}\\
|01\rangle & \rightarrow e^{i \phi}|01\rangle \tag{16}\\
|10\rangle & \rightarrow e^{i \phi}|10\rangle \tag{17}\\
|11\rangle & \rightarrow e^{2 i \phi}|11\rangle \tag{18}
\end{align*}
$$

$$
\operatorname{Span}\{|01\rangle,|10\rangle\} ?
$$

check...

$$
|\psi\rangle=a|01\rangle+b|10\rangle \rightarrow a e^{i \phi}|01\rangle+b e^{i \phi}|10\rangle=e^{i \phi}|\psi\rangle
$$

It works!!

Example continued

For $N=3$ the largest DFS is $\operatorname{Span}\{|001\rangle,|010\rangle,|100\rangle\}$ or
$\operatorname{Span}\{|011\rangle,|101\rangle,|110\rangle\}$
In general $\max [\operatorname{dim}(D F S)]=\binom{N}{F\left(\frac{N}{2}\right)}$ A textbook application of
stirling's formula yields the following.

$$
\frac{\left|\max [\operatorname{Dim}(D F S)]-2^{N}\right|}{2^{N}} \rightarrow 1
$$

The dimension of the optimal DFS becomes relatively close to the dimenstion of the system for large N.

