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Introduction

I Quantum coherence

I Ammonia Molecule

I Spin Chains

I Spontaneous emission and the Born-Markov Master equation

I Collisional Decoherence

I DFS



The Ammonia Molecule

Hamiltonian

H →
(

E0 −ε
−ε E0

)
=

(
〈1|H|1〉 〈1|H|2〉
〈2|H|1〉 〈2|H|2〉

)
Let us solve SE for |ψ(0)〉 = |1〉

I i~∂t |ψ(t)〉 = H|ψ(t)〉
I |ψ(t)〉 = U(t)|ψ(0)〉
I U(t) = e

−iHt
~ .



Ammonia Molecule continued

Solution
|ψ(t)〉 = e

−iE0t
~ (cos( εt~ )|1〉+ i sin( εt~ )|2〉)

State Matrix

ρ(t) = |ψ(t)〉〈ψ(t)| →
(

cos2( εt~ ) − cos( εt~ ) sin( εt~ )
i sin( εt~ ) cos(εt~) sin2( εt~ )

)
Time evolution of Tr [ρ(t)σz ]



2 spin system

I H = −1

2
[h0σ

0
z + h1σ

1
z ]− 1

2
[J0xσ

0
xσ

1
x + J0yσ

0
yσ

1
y + J0z σ

0
zσ

1
z ]

I H ∈ B(C⊗4)

I Let N = 10 and|ψ(0)〉 = |10〉 ∈ C⊗4



Spin chains
I H =
−1

2

∑N
n hnσ

n
z − 1

2

∑N−1
n [Jnx σ

n
xσ

n+1
x + Jny σ

n
yσ

n+1
y + Jnz σ

n
zσ

n+1
z ]

I H ∈ B(C⊗2N)

I Solving SE here is hard. Let's use qutip!

I Let N = 10 and|ψ(0)〉 = |1000000000〉 ∈ C⊗2N



More on spin chains

Stronger coupling parameters



Central spin sysem

I H =
−1

2

∑N
n hnσ

n
z − 1

2

∑N−1
n [Jnx σ

0
xσ

n+1
x + Jny σ

0
yσ

n+1
y + Jnz σ

0
zσ

n+1
z ]

I H ∈ B(C⊗2N)

I Again, solving SE here is hard. Let's use qutip!

I Let N = 10 and|ψ(0)〉 = |1000000000〉 ∈ C⊗2N



Quantum open systems

I Total system has some Hilbert space HS ⊗HE

I |ψSE 〉 ∈HS ⊗HE

I Dynamics provided by Schrödinger's equation.
i~∂t |ψSE (t)〉 = H|ψSE (t)〉 where H = HS + HE + HI .

I |ψSE (t)〉 = e−
it
~H . Just like before. We can attain the reduced

dynamics by partial tracing over the degrees of freedom
pertaining to the environment. i.e.

TrE{|ψSE (t)〉〈ψSE (t)|



Partial Trace

De�nition
TrE{} : T (HS ⊗HE )→ T (HS)

TrE{|ψSE (t)〉〈ψSE (t)|} :=
∑
k

〈φk |ψSE (t)〉〈ψSE (t)|φk〉,

where {|φk〉}k is an ONB for HE .

I Let use make sure that this map is the correct one.

I
AS → AS ⊗ IE ,

〈AS ⊗ IE 〉 = Tr{ρSE (AS ⊗ IE )}.

But it can be shown that

Tr{ρSE (AS ⊗ IE )} = TrS{ρSAS}!!!!.



Partial trace

I There you have it, all we need to do is compute

TrE{|ψSE (t)〉〈ψSE (t)|.

I This is generally intractable and approximations must be
made.

I Let's switch to the equivalent approach, Von neumann
equation is starting point.

∂

∂t
ρSE (t) = − i

~
[HSE , ρSE (t)] (1)

We can attain the reduced dynamics by partial trace.

∂

∂t
ρS(t) = − i

~
TrE{[HSE , ρSE (t)]} (2)



Born-Markov approximation

Equivalently.

∂

∂t
ρS(t) = − i

~
TrE{[HSE , ρS(0)⊗ ρE (0)]}+

+
i2

~2

∫ t

0

dt1TrE{[HSE , [HSE , ρS(t1)⊗ ρE (0)]]}

I Here we already begin to make approximations. We have
assumed that ρSE (0) = ρS(0)⊗ ρE (0), separable. This is the
Born approximation.

I We have also assumed that the environment is unchanged by
the system S . Unfortunately this too is intractable if we are

not able to make the approximation ρS(t1)→ ρS(t). This
makes the integro di�erential equation above more
manageable.



two-level system in bath

I Let E be a large, with respect to the system, bosonic bath and
S be a two-level system. Assuming that the two level system is
in the excited state at t = 0 we can use the Born-Markov
approximation to arrive at the following equation.

I

∂

∂t
ρS(t) =

−i
2

(ωa + ∆ωa)[σz , ρS(t)] + γD[σ−]ρS(t). (3)

I D[σ−]ρ = σ−ρσ+ − 1

2
(σ+σ−ρ+ ρσ+σ−) This is know as the

Born −Markov master equation. We now use it to solve for
the reduced density matrix.

I First assume that ρS(t) = 1

2
[I2 + x(t)σx + y(t)σy + z(t)σz ],

we also constraint the scalar functions to TrS{ρS(t)} = 1.



I ∂
∂t z(t) = Tr{σz ∂∂t ρS(t)}

I ∂
∂t y(t) = Tr{σy ∂

∂t ρS(t)}
I ∂

∂t x(t) = Tr{σx ∂
∂t ρS(t)}

Using the Lindblad Master equation to substitute for ∂
∂t ρS(t) these

equations become

I ∂
∂t z(t) = −γ(z(t) + 1)

I ∂
∂t y(t) = (∆ωa)x(t)− γ

2
y(t)

I ∂
∂t x(t) = −(∆ωa)y(t)− γ

2
x(t)

with solutions

I z(t) = 2e−γt − 1

I y(t) = −e−
γt
2 sin((ωa + ∆ωa)t)

I x(t) = e−
γt
2 sin((ωa + ∆ωa)t).



Continued

ρS(t)→

[
e−γt e−

γt
2 sin((ωa + ∆a)t) (1+i)

2

e−
γt
2 sin((ωa + ∆a)t) (1−i)

2
1− e−γt

]



Collisional Decoherence



Set up

Let H = HA ⊗HB be a product Hilbert space.

I dim[HA] = N

I dim[HB ] = M

I dim[H ] = NM.

Take H ∈ B(H ) = B(HA ⊗HB) with the following form.

H =
∑
k

Sk ⊗ Ek (4)

I Sk ∈ B(HA)

I EK ∈ B(HB)

I Sk = S†k and Ek = E †k , self adjoint.

Recognize the following equation? i ∂∂tψt = Hψt , ψt ∈H .



Set Up part 2

The solution to SE in the time independent case is just

ψt = e
−it
~

∑
k Sk⊗Ekψ0 (5)

Assuming that ψ0 = [
∑

l clφl ]⊗ η0,

I {φi}i form an ONB for HA.

I η0 ∈HB

ψt = e
−it
~

∑
k Sk⊗Ej ([

∑
l

clφl ]⊗ η0) (6)

Let us move to the state matrix representation.

I ρt = ψtψ
†
t =

e
−it
~

∑
k Sk⊗Ek ([

∑
l ,m clc

∗
mφlφ

†
m]⊗ η0η†0)e

it
~
∑

k Sk⊗Ek



Decoherence

Partial tracing over the degrees of freedom pertaining to HB we
get the HA local non unitary equation.

ρS(t) = TrB [e
−it
~

∑
k Sk⊗Ek ([

∑
l ,m

clc
∗
mφlφ

†
m]⊗η0η†0)e

it
~
∑

k Sk⊗Ek ] (7)

This partial trace in general reduces to some state of the form,

ρS(t) =
∑
l ,m

al(t)a∗m(t)φlφ
†
m

with al(t)a∗m(t)→ 0 as t →∞ forl 6= m.



Question

From what space HC ⊂HA may we construct sperpositions∑
l clφl that are immune to decoherence? i.e.

TrB [e
−it
~

∑
k Sk⊗Ek ([

∑
l ,m

clc
∗
mφlφ

†
m]⊗η0η†0)e

it
~
∑

k Sk⊗Ek ] =
∑
l ,m

clc
∗
mφlφ

†
m

(8)
Need{φi}i ONB, with the exotic property of forming a degenerate

eigen space for all Sk .

ψt = e
−it
~

∑
k Sk⊗Ek [

∑
l

clφl ]⊗ η0 = (9)

= [
∑
l

cle
−it
~

∑
k λk IA⊗Ekφl ]⊗ η0 =

∑
l

clφl ⊗ [e
−it
~

∑
k λk IA⊗Ekη0]

(10)



Partial Trace

Let us now partial trace the corresponding density matrix.

ρS(t) =
∑
l ,m

clc
∗
mφlφ

†
mTrB [e

−it
~

∑
k λk IA⊗Ekη0η

†
0
e

it
~
∑

k λk IA⊗Ek ]

The trace term is just one since density matricese have trace one

under unitary evolution.

ρS(t) =
∑
l ,m

clc
∗
m

. :)



Example, symmetric dephasing

Consider a system of N qubits coupled to its environment in the
follwoing way.

|0〉j → |0〉j (11)

|1〉j → e iφ|1〉j . (12)

j indexes over all qubits. Let the initial state be

|ψ〉0 =
N⊗
j=1

(aj |0〉j + bj |1〉j).

The dephasing process evolves our system into the following state.

|ψ〉φ =
N⊗
j=1

(aj |0〉j + bje
iφ|1〉j)

with a probability pφ



Example continued

The ensemble {|ψ〉φ, pφ} can be expressed equivalently as a mixed
state.

ρ =

∫
pφ|ψ〉φ〈ψ|dφ

|ψ〉φ〈ψ| →
[
|aj |2 ajb

∗
j e
−iφ

a∗j bje
iφ |b|2

]
. (13)

For a gaussian distribution pφ = (4πα
−1

2 )e
phi2

4α we have[
|aj |2 ajb

∗
j e
−α

a∗j bje
−α |b|2

]
. (14)

There is indeed decoherence present, lets look for a DFS.



Example continued

For starters lets consider the case N = 2. The dephasing for each
of the constituents of the corresponding Hilbert space C2 ⊗ C2 is
summarized by the following.

|00〉 → |00〉 (15)

|01〉 → e iφ|01〉 (16)

|10〉 → e iφ|10〉 (17)

|11〉 → e2iφ|11〉. (18)

Span{|01〉, |10〉}?

check...

|ψ〉 = a|01〉+ b|10〉 → ae iφ|01〉+ be iφ|10〉 = e iφ|ψ〉

It works!!



Example continued

For N = 3 the largest DFS is Span{|001〉, |010〉, |100〉} or

Span{|011〉, |101〉, |110〉}

In general max [dim(DFS)] =
( N
F (N

2
)

)
A textbook application of

stirling's formula yields the following.

|max [Dim(DFS)]− 2N |
2N

→ 1.

The dimension of the optimal DFS becomes relatively close to the
dimenstion of the system for large N.
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