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Abstract: In this paper we develop the mathematical foundations of the recently established
theory of Spectrum Broadcast Structures (SBS); we do this for the case of a central system

interacting with N non-interacting environments (von Neumann-type interactions). We developed
tools for studying the dynamical convergence of the multipartite quantum states in question to an

SBS state and provide necessary conditions for SBS to arise dynamically from the ensuing
non-unitary dynamics.

1 Work by Jarek et all

In recent times significant attention has been given to a family of multipartite states named
Spectrum Broadcast Structures (SBS) [37] [38] [39] [52]. Since its genesis, the theory of SBS has been
used as a tool in the discipline of Quantum Foundations; particularly in the theories of Quantum
Decoherence and Quantum Darwinism[12][30][40][41]. Recently, quantum darwinism and SBS theory
have been shown to be equivalent under certain technical assumptions [42]. Motivating the theory
of quantum darwinism and the theory of SBS is the question of objectivity in the quantum world.
To avoid philosophical contention [37] [38] and[39] provide a definition of objectivity motivated by
properties of classical dynamical systems. A multipartite quantum mechanical state satisfying such
properties is called a SBS. The definition of objectivity proposed in [37] is:

Definition 1. A state of the system S exists objectively if many observers can find out the state of
S independently, and without perturbing it.

There are two clauses in the definition above that are ambiguous, namely, "can find out the
state of S" and "without perturbing it". The first of these means that any of the observers may
locally solve a Quantum State Discrimination optimization problem (QSD) [22] [25] [63] that allows
the observer to identify the state of the system S by proxy, we include a brief discussion regarding
QSD in appendix A. The second clause, "without perturbing it" may be formalized by introducing
a distance measure. We will only be using the trace distance, but different distance measures may
be more relevant in other scenarios. The following definition proposed in [37] is a mathematical
formalization of Definition 1 and is what we will refer to as a SBS.

Definition 2. SBS: A Spectrum Broadcast Structure is a multipartite state (also called joint state)
of a central system S and an environment E, consisting of sub-environments E1, E2, ..., ENE :

ρ̂ =
∑

i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek

i (1)

where {|i⟩}i is some basis in the system’s space, pi are probabilities summing to one, and all states
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ρ̂Ek

i are perfectly distinguishable in the following sense:

F
(
ρ̂Ek

i , ρ̂Ek

j

)
= 0 (2)

for all i ̸= j and for all k = 1, ..., NE. Where F (..., ...) is the quantum fidelity defined as F
(
ρ̂, σ̂

)
:=∥∥√

ρ̂
√

σ̂
∥∥2

1 [60].

In [37] it is argued that SBS satisfies the desired definition of objectivity and that it is the
only structure that satisfies such a definition. The argument for why the observer monitoring (i.e.
employing measurements characterized via a POVM [9]) El may find out the state of S independently
is the following. Let us analyze the local state pertaining to El; to do this we partially trace out the
degrees of freedom pertaining to the system S and all of the environments Ek with the exception of
the lth environment. i.e. from (1) we obtain

∑
i

pi

(∏
k ̸=l

TrEk

{
ρ̂Ek

i

})
⟨i|i⟩ρ̂El

i =
∑

i

piρ̂
El

i . (3)

Notice that this is a mixed state. If F
(
ρ̂El

i , ρ̂El

j

)
= 0 for all i ̸= j then the associated quantum

state discrimination problem may be fully solved. This means that there exists a POVM which the
observer monitoring the environment El may utilize to conduct measurements on El yielding perfect
distinguishability between the possible outcomes of the mixture (3). Furthermore, the state ρ̂El

i is
correlated with the state

∣∣i〉〈i∣∣ of S in the sense that when S is found to be in the state
∣∣i〉〈i∣∣ the

lth environment will be found in the state ρ̂El

i . Owing to the perfect distinguishability between the
states ρ̂El

i for all i, there is no ambiguity regarding the state of S given that El is found to be in the
state ρ̂El

i . Since l was taken to be arbitrary, it is clear that any environmental observer may find
out the state of S faithfully so long as F

(
ρ̂El

i , ρ̂El

j

)
= 0 is satisfied for all i ̸= j.

To argue non-disturbance (a similar approach follows for approximate non-disturbance) we first
re-emphasize that the "can find out" in Definition 1 formally means that for every Ek there exists
a POVM {ÊEk

i }i that solves the respective local QSD problem, i.e. that discriminates perfectly
the mixture (3). {

⊗NE

k=1 ÊEk

ik
}i1,i2,...,iNE

will hence be a POVM acting on S
(
HS

⊗NE

k=1 HEk

)
. If the

POVM optimally solving the local QSD problem for each environment El does so in a non-perturbing
way, i.e. not changing the state after the associated measurement quantum channel has been applied
in the trace distance sense, then the measurement associated with the POVM {

⊗NE

k=1 ÊEk

ik
}i1,i2,...,iNE

may be shown to also be non-disturbing with respect to the trace distance. i.e. it can be shown that

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek

i −
∑
i1

∑
i2

...
∑
iNE

(∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂Ek

i

(
M̂Ek

ik

)†
)∥∥∥∥

1
= 0 (4)

where
(

M̂Ek

ik

)†
M̂Ek

ik
= ÊEk

ik
isthe POVM perfectly discriminating the mixture

∑
i piρ̂

Ek

i . To show

(4) note that perfect distinguishability of the ρ̂Ek

i for all k implies that we may devise a POVM
{ÊEk

ik
}ik

such that

M̂Ek

ik
ρ̂Ek

i

(
M̂Ek

ik

)†
= δiki. (5)

owing to the non-overlapping support of the ρ̂Ek

i . With (5) in mind, we may estimate the trace
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distance in (4).

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek

i −
∑
i1

∑
i2

...
∑
iNE

(∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂Ek

i

(
M̂Ek

ik

)†
)∥∥∥∥

1
= (6)

1
2

∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek

i −
∑

i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
∥∥∥∥

1
≤ (7)

1
2
∑

i

pi

∥∥∥∥ NE⊗
k=1

ρ̂Ek

i −
NE⊗
k=1

M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
∥∥∥∥

1
(8)

To proceed we introduce the following Lemma and we also take this opportunity to introduce two
results that shall be used in the following.

Lemma 1. Telescopic inequality [39]: Let Âk and ˆ̂
Bk be trace class operators for all k. Then,

∥∥ N⊗
k=1

Âk −
N⊗

k=1
B̂k
∥∥

1 ≤ (9)

N∑
j=1

( j−1∏
k=1

∥∥Âk
∥∥

1

)
×
∥∥Âj − B̂j

∥∥
1 ×

( N∏
k=j+1

∥∥B̂k
∥∥

1

)
(10)

Theorem 1. Montanaro Bound [68]:

min
P OV M

pE ≥ 1
2
∑

i

∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) (11)

Theorem 2. Knill and Barnum [26]

min
P OV M

pE ≤
∑

i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i, ρ̂j

)
(12)

Using Lemma 1, (8) may be bounded as follows.

1
2
∑

i

pi

∥∥∥∥ NE⊗
k=1

ρ̂Ek

i −
NE⊗
k=1

M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
∥∥∥∥

1
≤ 1

2

NE∑
k=1

∑
i

pi

∥∥∥∥ρ̂Ek

i − M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
∥∥∥∥

1
(13)

We claim that the distinguishability criterion F
(
ρ̂Ek

i , ρ̂Ek

j

)
= 0 ( i ̸= j) for all k is a necessary and

sufficient condition for (13) to vanish. For the case of perfect distinguishability, the sufficiency is im-
mediately clear since each ÊEk

i may be chosen to be a projector onto the domain of ρ̂Ek

i respectively,

meaning that M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
= ρ̂Ek

i which in turn implies that
∥∥ρ̂Ek

i − M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†∥∥
1 = 0.

The argument becomes more transparent in the case where all of the ρ̂Ek

i are projectors. In such a
case we simply choose ÊEk

i = ρ̂Ek

i .

The distinguishability condition F
(
ρ̂Ek

i , ρ̂Ek

j

)
= 0 (i ̸= j) for all k is of course an idealization; in

practice there will always be some error involved in the distinguishability measures F
(
ρ̂Ek

i , ρ̂Ek

j

)
= εk

for all k, where εk > 0 will depend on dynamical parameters such as time. In such a case we must
tread more carefully. In the previous paragraph, we did not need to calculate or estimate the trace
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norm present because we showed that the operator in the trace norm was the zero operator. If the
perfect distinguishability condition is not satisfied, then we will need to compute/estimate the sum
over i of trace norms in (13). Although it is known that

min
P OV M

Tr
{

ρ̂Ek

i − M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†}
≤
∑

i

∑
j;j ̸=i

√
pipj

√
F (ρ̂i, ρ̂i) (14)

via an application of 2 for all k, this does not aid us in the estimation of the associate optimization
problem

∑
i pi

∥∥ρ̂Ek

i −M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†∥∥
1. It is clear by (14) that if the fidelities F

(
ρ̂Ek

i , ρ̂Ek

j

)
(i ̸= j)

are arbitrarily small, then for all k the local QSD error minP OV M Tr{ρ̂Ek

i − M̂Ek

i ρ̂Ek

i

(
M̂Ek

i

)†
} will

also become arbitrarily small. To show that a similar argument holds for the right-hand side of
the inequality (13) we will prove in the following section a bound for (8) that will depend only
on fidelities between the set of density operators {ρ̂Ek

i }i, and vanish as the fidelities F
(
ρ̂Ek

i , ρ̂Ek

j

)
(i ̸= j) decay to zero for all k. We will first show this for the case where the ρ̂Ek

i are pure states
and then make strides in generalizing our results to the case where these operators are mixtures.

2 Bounding the Super Quantum State Discrimination Prob-
lem (SQSD)

For this section, we shall be simplifying our notational conventions since we shall not need the su-
perscripts on the density operators used in the previous section. Consider the mixed state

∑N
i=1 piρ̂i,

where
∑N

i=1 pi = 1 and the ρ̂i are pure states in a Hilbert space of dimension greater than N , i.e.
one-dimensional projections

∣∣ψi

〉〈
ψi

∣∣, where
{∣∣ψi

〉}N

i=1 are normalized vectors. Assuming that
∣∣ψi

〉
are linearly independent, we may use the well-known Gram-Schmidt procedure to define an associ-
ated orthonormal set.

Definition 3. Gram-Schmidt Procedure: Assume that the set
{∣∣ψ〉

i

}N

i=1, of vectors in some vector
space V , is a linearly independent set. Then the following construction yields an orthonormal set.

∣∣ϕ1
〉

=
∣∣ψ1
〉

(15)

∣∣ϕ2
〉

= 1
α2

(∣∣ψ2
〉

−
〈
ϕ1
∣∣ψ2
〉∣∣ϕ1

〉)
(16)

...∣∣ϕN

〉
= 1
αN

(∣∣ψN

〉
−

N−1∑
k=1

〈
ϕk

∣∣ψN

〉∣∣ϕk

〉)
(17)

Here αi :=
∥∥∥∣∣ψi

〉
−
∑i−1

k=1

〈
ϕk

∣∣ψi

〉∣∣ϕk

〉∥∥ =
√

1 −
∑i−1

k=1
∣∣〈ϕk

∣∣ψi

〉∣∣2 for i > 1 and α1 = 1 are the

respective normalization constants. We have Span
{{∣∣ψi

〉}N

i=1

}
= Span

{{∣∣ϕi

〉}N

i=1

}
.

The orthonormal set
{∣∣ϕi

〉}N

i=1 may be used for the construction of a PVM , namely

{∣∣ϕi

〉〈
ϕi

∣∣}N

i=1
∪
{
I −

N∑
i=1

∣∣ϕi

〉〈
ϕi

∣∣} (18)
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which we will use it to estimate minP OV M

∑N
i=1 pi

∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥
1, this minimization problem will

be named the Super Quantum State Discrimination problem (SQSD) due to its bounding of the
associated QSD problem (i.e. Tr

{
Â
}

≤
∥∥Â
∥∥

1):

min
P OV M

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min

P OV M

N∑
i=1

pi

∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥
1 ≤ (19)

min
P V M

N∑
i=1

pi

∥∥ρ̂i − P̂iρ̂iP̂i

∥∥
1 ≤

N∑
i=1

pi

∥∥∥ρ̂i −
∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

(20)

Lemma 2. Let ρ̂i and
∣∣ϕi

〉
be defined as above; also let i > 1, then

∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi

∥∥
1 ≤ 2

i−1∑
k=1

|⟨ϕk|ψi⟩| (21)

Proof. ∥∥∥ρ̂i −
∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

=
∥∥∥∣∣ψi

〉〈
ψi

∣∣ρ̂i

∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

= (22)∥∥∥(∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣)ρ̂i

∣∣ψi

〉〈
ψi

∣∣+
∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

(∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣)∥∥∥
1

≤ (23)

∥∥∥(∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣)ρ̂i

∣∣ψi

〉〈
ψi

∣∣∥∥∥
1

+
∣∣∣∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

(∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣)∥∥∥
1

≤ (24)∥∥∥∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

∥∥∥ρ̂i

∣∣ψi

〉〈
ψi

∣∣∥∥∥
1

+
∥∥∥∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

∥∥∥
1

∥∥∥∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

= (25)

∥∥∥∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

(∥∥∥ρ̂i

∣∣ψi

〉〈
ψi

∣∣∥∥∥
1

+
∥∥∥∣∣ϕi

〉〈
ϕi

∣∣ρ̂i

∥∥∥
1

)
≤ (26)

∥∥∥∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

(∥∥ρ̂i

∥∥
1

∥∥∥∣∣ψi

〉〈
ψi

∣∣∥∥∥
1

+
∥∥∥∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

∥∥ρ̂i

∥∥
1

)
≤ (27)

2
∥∥∥∣∣ψi

〉〈
ψi

∣∣−
∣∣ϕi

〉〈
ϕi

∣∣∥∥∥
1

= 2
√

1 − |
〈
ψi

∣∣ϕi

〉
|2 = (28)

2

√√√√1 −

∣∣∣∣∣ 1
αi

(
1 −

i−1∑
k=1

|
〈
ϕk

∣∣ψi

〉
|2
)∣∣∣∣∣

2

= 2

√√√√√√1 −

∣∣∣∣∣
(

1 −
∑i−1

k=1 |
〈
ϕk

∣∣ψi

〉
|2
)

√(
1 −

∑i−1
k=1 |

〈
ϕk

∣∣ψi

〉
|2
)
∣∣∣∣∣
2

(29)

= 2

√√√√1 − 1 +
i−1∑
k=1

|
〈
ϕk

∣∣ψi

〉
|2 = 2

√√√√i−1∑
k=1

|
〈
ϕk

∣∣ψi

〉
|2 ≤ 2

i−1∑
k=1

|
〈
ϕk

∣∣ψi

〉
| (30)

where we have used the fact that
∑i−1

k=1 |
〈
ϕk

∣∣ψi

〉
|2 ≤ 1 in the last line (Bessel’s inequality).

The term
∑i−1

k=1
∣∣〈ϕk

∣∣ψi

〉
| may be understood by analyzing it through the scope of its related

Gram Determinant. We present this as a lemma.
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Lemma 3.

∣∣ϕj

〉
= 1√

Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψ1
∣∣ψ1
〉 〈

ψ1
∣∣ψ2
〉

. . .
〈
ψ1
∣∣ψj

〉〈
ψ2
∣∣ψ1
〉 〈

ψ2
∣∣ψ2
〉

. . .
〈
ψ2
∣∣ψj

〉
...

...
. . .

...〈
ψj−1

∣∣ψ1
〉 〈

ψj−1
∣∣ψ2
〉

. . .
〈
ψj−1

∣∣ψj

〉∣∣ψ1
〉 ∣∣ψ2

〉
. . .

∣∣ψj

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
(31)

where

Dj :=

∣∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψj⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψj⟩

...
...

. . .
...

⟨ψj |ψ1⟩ ⟨ψj |ψ2⟩ . . . ⟨ψj |ψj⟩

∣∣∣∣∣∣∣∣∣∣
(32)

with the definitions
∣∣ϕ1
〉

:=
∣∣ψ1
〉
, D0 := 1 and D1 = 1; making consistent the case where j = 1

and k = 0, 1 for
∣∣ϕi

〉
and Dk respectively. The vertical lines to the left and to the rigth of the above

arrays indicate that a determinant is being taken.

In determinant form,
〈
ψi

∣∣ϕk

〉
may now be written as follows.

〈
ψi

∣∣ϕk

〉
= 1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψ1
∣∣ψ1
〉 〈

ψ1
∣∣ψ2
〉

. . .
〈
ψ1
∣∣ψk

〉〈
ψ2
∣∣ψ1
〉 〈

ψ2
∣∣ψ2
〉

. . .
〈
ψ2
∣∣ψk

〉
...

...
. . .

...〈
ψk−1

∣∣ψ1
〉 〈

ψk−1
∣∣ψ2
〉

. . .
〈
ψk−1

∣∣ψk

〉〈
ψi

∣∣ψ1
〉 〈

ψi

∣∣ψ2
〉

. . .
〈
ψi

∣∣ψk

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
(33)

The power of viewing the states
∣∣ϕi

〉
in their determinant form is that now we need only compute

inner products between elements of the set
{∣∣ψi

〉}N

i=1 in order to estimate the effectiveness of the
PVM (18) in approximating a solution to the SQSD problem with PVM, i.e. minP V M

∑N
i=1 pi

∥∥ρ̂i −
P̂iρ̂iP̂i

∥∥
1. Recall that the states

{∣∣ψi

〉}N

i=1 are normalized and let us consider the case where〈
ψi

∣∣ψj

〉
= εij for all i ̸= j ∈ {1, ..., N}, where εij are complex numbers satisfying |εij | ≤ δ for all

i ̸= j ∈ {1, .., N}, where δ is small. Since, under this assumption, all entries of the last column of the
matrix (33) are small, this would also imply that

∥∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi

∥∥∥
1

is small for all i, thanks
to Lemma 2.

The above estimates imply the following theorem.

Theorem 3. Consider a mixed state of the form
∑N

i=1 piρ̂i,
∑N

i=1 pi = 1, where ρ̂i :=
∣∣ψi

〉〈
ψi

∣∣ are
pure states acting on a Hilbert space of dimension greater than N . Furthermore, assume that the
states {

∣∣ψi

〉
}i are linearly independent. Then

min
P OV M

N∑
i=1

pi

∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥∥
1

≤
N∑

i=2
pi

i−1∑
k=1

∣∣∣ Mk,i

Dk−1Dk

∣∣∣∣ (34)
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where

Mk,i := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
...

. . .
...

⟨ψk−1|ψ1⟩ ⟨ψk−1|ψ2⟩ . . . ⟨ψk−1|ψk⟩
⟨ψi|ψ1⟩ ⟨ψi|ψ2⟩ . . . ⟨ψi|ψk⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣
(35)

Dk :=

∣∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

...
...

. . .
...

⟨ψk|ψ1⟩ ⟨ψk|ψ2⟩ . . . ⟨ψk|ψk⟩

∣∣∣∣∣∣∣∣∣∣
(36)

Proof. The proof follows directly from Lemma 3 and Lemma 2, and the fact that for i = 1 the
corresponding projector is simply

∣∣ψi

〉〈
ψi

∣∣ making the i = 1 term zero.

It is with the bound provided by Theorem 3 that we may estimate the right-hand side of (13).
Notice that the magnitudes of the elements of the determinants found in (34) and (36) are all
bounded by the square root of the respective fidelities. i.e noting that [9]

〈
ψi

∣∣ψj

〉
≤
∣∣〈ψi

∣∣ψj

〉∣∣ =
√
F
(∣∣ψi

〉〈
ψi

∣∣, ∣∣ψj

〉〈
ψj

∣∣). (37)

With the latter relationship, it is clear that the bound of Theorem 3 will consist purely of fidelities
as was alluded to in the previous section.

3 Dynamical Monitoring for discrete variables

Although SBS are interesting objects of study without regard to anything else, more intriguing is
studying the dynamical convergence of some time-dependent density operator ρ̂t to a SBS state. If we
now apriori that a certain type of multifaceted quantum mechanical system should behave objectively
per Definitions 1 and 2, then the states of said multifaceted systems should exhibit convergence to
some SBS state in physically relevant time domains which often include the asymptotical case of
t → ∞, where t is the dynamical parameter in question. Time dependence may in general be
generated by some arbitrary time-dependent quantum map. However, we will focus on the quantum
maps generated from quantum-measurement limit type interaction Hamiltonians of the von Neumann
type [18] which are central to the theory of Quantum Decoherence [30]. Before we get to the heart
of the matter concerning these types of quantum maps, we shall define the concept of quantum-
measurement limit and the von Neumann type Hamiltonains.

3.1 Quantum-Measurement Limit

The principal models studied in SBS literature [37][38][39] are of the quantum-measurement limit
type, meaning SBS that arise from dynamics generated by Hamiltonians in which the interaction
term between the system S and the environment E greatly dominates, i.e. Ĥtot ≈ Ĥint (tot means
total and int indicates "interaction terms"). Such an approximation is valid when the system and
the environments evolve with respect to a time scale that is much larger than that of the time scale

7



corresponding to that of the interactive dynamics. In this work, we will furthermore narrow our
focus to interaction Hamiltonains of the following form

Ĥint = X̂ ⊗
N∑

k=1
gkB̂k (38)

A Hamiltonian of the form (38) is said to be of the von Neumann type [18]. The corresponding time
evolution operator is hence

Ût = e−itX̂⊗
∑N

k=1
gkB̂k . (39)

The theory of SBS for discrete variables focuses on the case where the system S is described by
a finite-dimensional Hilbert space [37][38][39]. As such the self-adjoint operator X̂ will have purely
discrete spectrum, i.e. only eigenvalues. Let {

∣∣i〉}dS
i=1 be the set of eigenvectors of X̂ with corre-

sponding eigenvalues xi; dS is the dimension of HS the Hilbert space associated with the sytem S.
B̂k will be assumed to be an arbitrary self-adjoint operator. We shall see in what is to come that
the spectral properties of the operator B̂ will determine whether or not the multipartite states we
shall be studying converge to an SBS state.

3.2 Partial Tracing

In what follows we will follow the approach taken in [39] and revert back to the notational
conventions used in the first section. We consider a quantum system interacting with N macroscopic
environments. We assume that the joint initial state has the product form:

ρ̂ = ρ̂S0 ⊗
N⊗

k=1
ρ̂Ek

0 (40)

In the sate (40) we write the subscript 0 in Ek
0 in order to emphasize that this is the initial state

of the kth environment Ek, similarly, we use the subscript S0 to highlight the initial state of the
system. We evolve our total initial state using the evolution operator (39).

ρ̂t =
(
e−itX̂⊗

∑N

k=1
gkB̂k

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂Ek
0

(
eitX̂⊗

∑N

k=1
gkB̂k

)
. (41)

To study the state of the subsystem formed by the system S and the first NE environments, we
take the partial trace of the time-evolved density operator over the remaining ME := N − NE

environments. The result is,
dS∑

i,j=1
σi,jΓ(i, j, t)|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂Ek
t

xi,xj
(42)

where, again, {
∣∣i〉}ds

i=1 are the eigenvectors of X̂, with corresponding eigenvalues {xi}dS
i=1 and we

have the following definitions.

ρ̂Ek
t

x,y := e−itxgkB̂k ρ̂Ek
0 eitygkB̂k (k = 1, 2, ..., NE) (43)

ρ̂Ek
t

x := e−itxgkB̂k ρ̂Ek
0 eitxgkB̂k (k = 1, 2, ..., NE). (44)
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σi,j := ⟨i|ρ̂S0 |j⟩ (45)

γk
i,j(t) := Tr

{
ρ̂Ek

t
xi,xj

}
(46)

Γ(i, j, , t) :=
N∏

n=NE+1
γn

i,j(t) (47)

Let us now define the following quantum map [9].

Λ
(

ρ̂S0 ⊗
N⊗

k=1
ρ̂Ek

0
)

:=
dS∑

i,j=1
σi,jΓ(i, j, t)|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂Ek
t

xi,xj
(48)

The right-hand side of (48) may be compactly rewritten as

Ut

(
Et{ρ̂S0} ⊗

NE⊗
k=1

ρ̂Ek
0
)

(49)

where
Ut

(
Â
)

:= e−itX̂⊗
∑NE

k=1
gkB̂k

(
Â
)
eitX̂⊗

∑NE

k=1
gkB̂k (50)

and

Et(Ĉ) :=
dS∑

i,j=1
⟨i|Ĉ|j⟩Γ(i, j, t)|i⟩⟨j| (51)

Deriving (48) from (49) is not very involved. One need only utilize the eigenvectors of X̂ in order to
rewrite the density operator ρ̂S0 on the left-hand side of (48). The trace-preserving quantum map
Λ is a composition of two trace-preserving quantum Ut and Et: a unitary map acting on S and the
environmental degrees of freedom that were not traced out and a non-unitary map acting locally in
S.

4 Monitoring the Process of System Information Broadcast-
ing

In [39], a SBS state associated with (42) is defined for every value of t > 0; the goal therein was
to show that (42) converges to an associated SBS state as t goes to ∞. The associated SBS state
of (42) at time t is defined as follows. We first restrict the sum of (42) to the diagonal terms—the
terms with i = j. We will label the resulting operator as follows.

ρ̂dg,t =
dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek
t

xi
(52)

The next step is to choose for every t a PVM acting on the space S
(
HS ⊗

⊗NE

k=1 HEk

)
( Note that

for the case considered in [39], dim(HS) = dS < ∞ and dim(HEk ) = dEk < ∞ for all k). To define
such a PVM, the authors use the eigenbasis of the operator X̂: the elements of the PVM are of the
form

∣∣i〉〈i∣∣⊗⊗NE

k=1 P̂Ek
t

j where the
{∣∣i〉〈i∣∣}dS

i=1 and
{

P̂Ek
t

j

}dS

j=1 ∪
{
I−
∑dS

i=1 P̂Ek
t

i

}
resolve the identity

operators in B
(
HS

)
and B

(
HEk

)
respectively, so that, in particular,

{
P̂Ek

t
j

}dS

j=1 ∪
{
I −

∑dS

i=1 P̂Ek
t

i

}
is a PVM in the kth environment’s Hilbert space. The latter PVMs are then used to approximate
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the operator (42) by an SBS state:

ρ̂SBS,t := 1
N

dS∑
j=1

(∣∣j〉〈j∣∣⊗
NE⊗
k=1

P
Ek

t
j

)
ρ̂diag,t

(∣∣j〉〈j∣∣⊗
NE⊗
k=1

P̂Ek
t

j

)
= (53)

dS∑
i=1

σ̃i|i⟩⟨i| ⊗
NE⊗
k=1

(
P̂Ek

t
i ρ̂Ek

t
xi

P̂Ek
t

i

)
. (54)

Here N is a normalizing constant and σ̃i := σi

N . With a bit of thought, one can verify that the
operator (54) is indeed an SBS state as defined in Definition 2. If (42) converges to an object with
the form (54) as t → ∞, we say that (42) is asymptotically SBS. Convergence is meant here in the
sense of trace distance. Namely, one would like to show that

1
2 min

P V M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 → 0 as t → ∞ (55)

where for each t the minimization is taken over all projective-valued-measures
{

P̂Ek
t

i }dS
i=1 ∪ {I −∑dS

i=1 P̂Ek
t

i }. Utilizing the fact that 1
2 minP OV M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 ≤ 1

2 minP V M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 we may

conclude that (55) implies that 1
2 minP OV M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 → 0 as t → ∞ as well. An attempt is

made in [39] to prove (55) for he current setting but the argument provided there is incomplete. In
what follows we discuss the bounds presented in [39], as well as propose and prove an alternative
bound for the trace distance in (55).

In [39], a bound is conjectured for the trace distance in (55). In the case where ME environmental
degrees of freedom have been traced out and NE remain, the bound looks as follows.

1
2 min

P V M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 ≤ Γ(t) +

∑
i

∑
j;j ̸=i

√
σiσj

NE∑
k=1

F
(
ρ̂Ek

t
xi
, ρ̂Ek

t
xj

)
(56)

where now, Γ(t) :=
∑

i

∑
j;j ̸=i |σi,j |

∏N
k=NE+1 |γk

i,j(t)|, and again γk
i,j(t) = Tr

[
ρ̂Ek

t
xi,xj

]
, σi,j :=

⟨i|ρ̂S0 |j⟩ . If true, this result would allow us to estimate the minimum on the LHS, using the
asymptotic properties of Γ(t) and the fidelity terms in (56). This estimate would further give us a
way to estimate 1

2 minP OV M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1. As (56) is currently not known to be true, we will not

be using it. Instead, we will be utilizing the bound proven in the previous section which constitutes
Theorem 3. For the interested reader, we include a discussion pointing out the gap in the proof of
the main theorem of [39] in appendix A.

4.1 A New Bound for the Trace Distance of a Multipartite State and an
Approximating SBS state

In what follows we use an unnormalized version of (53): ρ̂P SBS,t := N ρ̂SBS,t. This state is just
(53) without the normalization factor 1

N . In practice it is easier to bound
∥∥ρ̂t − ρ̂P SBS,t

∥∥
1 and then

utilize Lemma 4, stated below, to bound
∥∥ρ̂t − ρ̂SBS,t

∥∥
1.

Lemma 4.
∥∥ρ̂ − ησ̂

∥∥
1 ≤ L implies

∥∥ρ̂ − σ̂
∥∥ ≤ 2L for constants L ≥ 0 and η ∈ [0, 1]
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Proof. Using reverse triangle inequality we see that

L ≥ ∥ρ̂ − ησ̂∥1 ≥
∣∣∥ρ̂∥1 − ∥ησ̂∥1

∣∣ = ∥ρ̂∥1 − ∥ησ̂∥1 = 1 − η (57)

furthermore
∥ρ̂ − σ̂∥1 = ∥ρ̂ − ησ̂ + ησ̂ − σ̂∥1 ≤ ∥ρ̂ − ησ̂∥1 + ∥ησ̂ − σ̂∥1 ≤ (58)

L+ (1 − η)∥σ̂∥1 = L+ (1 − η) ≤ L+ L = 2L (59)

We now prove a preliminary inequality.

∥∥ρ̂t − ρ̂P SBS,t

∥∥
1 = (60)

∥∥∥∥ dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂Ek
t

xi,xj
−

dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

∥∥∥∥
1

≤ (61)

∥∥∥∥ dS∑
i=1

σi|i⟩⟨i|⊗
NE⊗
k=1

ρ̂Ek
t

xi
−

dS∑
i=1

σi|i⟩⟨i|⊗
NE⊗
k=1

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

∥∥∥∥
1
+
∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j|⊗
NE⊗
k=1

ρ̂Ek
t

xi,xj

∥∥∥∥
k

≤

(62)
dS∑
i=1

∥∥∥∥σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂Ek
t

xi
− σi|i⟩⟨i| ⊗

NE⊗
k=1

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂Ek
t

xi,xj

∥∥∥∥
1

≤

(63)
dS∑
i=1

σi

∥∥∥∥|i⟩⟨i|⊗
( NE⊗

k=1
ρ̂Ek

t
xi

−
NE⊗
k=1

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

)∥∥∥∥
1

+
∑

i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣∥∥∥∥|i⟩⟨j|⊗

NE⊗
k=1

ρ̂Ek
t

xi,xj

∥∥∥∥
1

= (64)

dS∑
i=1

σi

∥∥∥∥ NE⊗
k=1

ρ̂Ek
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

∥∥∥∥
1

+
∑

i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣ ≤ (65)

NE∑
k=1

dS∑
i=1

σi

∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂Ek

t
xi

P̂Ek
t

i

∥∥∥∥
1

+
∑

i

dS∑
j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣ (66)

Where in the last step we have used Lemma 1. Now, using Lemma 4 we conclude that

1
2 min

P V M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 ≤ min

P V M

( NE∑
k=1

dS∑
i=1

σi

∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂Ek

t
xi

P̂E1
t

i

∥∥∥∥
1

)
+ Γ(t) (67)

Recalling that Γ(t) :=
∑

i

∑
j;j ̸=i |σi,j |

∏N
k=NE+1 |γk

i,j(t)|, γk
i,j(t) = Tr

[
ρ̂Ek

t
xi,xj

]
, and σi,j := ⟨i|ρ̂S0 |j⟩.

Γ(t) (67) is the decoherence term which is independent of the choice of the PVM minimized over.
The decoherence term is simple to study provided that we are able to compute the trace defining
the terms γk

i,j(t). The first term in (67) involves a minimization over all PVM for each value of t.
Rather than attempting to solve the minimization problem exactly, we shall be employing Theorem
3 to bound (67).

In order to apply Theorem 3 to estimate the first term in (67) we must assume that the initial
states ρ̂Ek

0 are pure, we will consider the case where these are not pure in Section 5. The purity of
ρ̂Ek

0 furthermore implies that the operators ρ̂
Ek

t
i are pure for all i since the evolution (44) is unitary.
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We will henceforth write ρ̂Ek
0 as a projector.

∣∣ψk
i,t

〉〈
ψk

i,t

∣∣ = ρ̂
Ek

t
i (68)

We now use Theorem 3 to estimate the first summand of (67), therefore leading the following
theorem.

Theorem 4. Using the definitions found in this section so far.

1
2 min

P OV M

∥∥ρ̂t − ρ̂SBS,t

∥∥
1 ≤ 1

2

NE∑
k=1

dS∑
i=2

σi

i−1∑
s=1

∣∣∣∣ Mk
s,i

Dk
s−1,tD

k
s,t

∣∣∣∣+ Γ(t) (69)

where

Mk
s,i :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψk

1,t

∣∣ψk
1,t

〉 〈
ψk

1,t

∣∣ψk
2,t

〉
. . .

〈
ψk

1,t

∣∣ψk
s,t

〉〈
ψk

2,t

∣∣ψk
1,t

〉 〈
ψk

2,t

∣∣ψk
2,t

〉
. . .

〈
ψk

2,t

∣∣ψk
s,t

〉
...

...
. . .

...〈
ψk

s−1,t

∣∣ψk
1,t

〉 〈
ψk

s−1,t

∣∣ψk
2,t

〉
. . .

〈
ψk

s−1,t

∣∣ψk
s,t

〉〈
ψk

i,t

∣∣ψk
1,t

〉 〈
ψk

i,t

∣∣ψk
2,t

〉
. . .

〈
ψk

i,t

∣∣ψk
s,t

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
(70)

Dk
s,t :=

∣∣∣∣∣∣∣∣∣∣

〈
ψk

1,t

∣∣ψk
1,t

〉 〈
ψk

1,t

∣∣ψk
2,t

〉
. . .

〈
ψk

1,t

∣∣ψk
s,t

〉〈
ψk

2,t

∣∣ψk
1,t

〉 〈
ψk

2,t

∣∣ψk
2,t

〉
. . .

〈
ψk

2,t

∣∣ψk
s,t

〉
...

...
. . .

...〈
ψk

j,t

∣∣ψk
1,t

〉 〈
ψk

j,t

∣∣ψk
2,t

〉
. . .

〈
ψk

s,t

∣∣ψk
s,t

〉

∣∣∣∣∣∣∣∣∣∣
(71)

It is with Theorem 4 that we hope to mitigate the gap in [39]. Although Corollary 1 of [39] is
not substantiated by a correct proof at the moment, we present Theorem 4 as a viable alternative
to corollary 1 of [39]. If fate should have it that corollary 1 is shown to be fundamentally untrue,
then Theorem 4 would be the only tool for us to choose from ( i.e. to the extent of the author’s
knowledge).

5 Mixed Environmental States

Recall that we named the sums over i in (67) the SQSD problem for the mixture
∑

i σiρ̂
Ek

t
xi

. We
remind the reader that we call it Super Quantum State Discrimination (SQSD) because (67) bounds
the respective QSD error pE

{
pi, ρ̂Ek

t
xi
, P̂Ek

t
i

}
as follows.

pE

{
pi, ρ̂Ek

t
xi
, P̂Ek

t
i

}
=

dS∑
i=1

σiTr

{
ρ̂E1

t
xi

− P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

}
≤

dS∑
i=1

σi

∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂Ek

t
xi

P̂Ek
t

i

∥∥∥∥
1

(72)

where we have used the fact that
∣∣Tr{Â

}∣∣ ≤
∥∥Â
∥∥

1.
The theory we have developed so far considers only the case where ρ̂Ek

t
xi

are pure states for all i and
k. In this section, we will further develop the previous section by providing the analog to Theorem
3 for the case where the environmental degrees of freedom are finite mixtures of pure states. Using
a simpler indexing scheme, consider a mixed state of the form

∑N
i=1 piρ̂i, where

∑N
i=1 pi = 1 and

the ρ̂i are all countably-mixed states; i.e. ρ̂i =
∑Mi

k=1 ηikρ̂ik where all of the ρ̂ik are pure states and

12



∑Mi

k=1 ηik = 1. Let us now consider the QSD problem

min
P OV M

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
. (73)

The latter item is bounded above by the minimization problem that we have been concerned with
in the previous section, i.e. minimizing over all PVM as opposed to minimizing over all POVM in
(73). In turn, it is also bounded above by the super PVM quantum state discrimination error as
seen in the following relationship.

min
P OV M

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min

P V M

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ (74)

min
P V M

N∑
i=1

pi

∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥
1

(75)

As mentioned before, the latter follows from the fact that all PVMs are POVMs, making the space
over which the objective function is minimized smaller and therefore yielding a smaller minimum.

Using the bound of Theorem 1 we will bound (74) and (75) from below. Namely,

1
2

N∑
i=1

N∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) ≤ min
P V M

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂i=1P̂i

∥∥∥
1

(76)

Expanding the ρ̂i we see that

F (ρ̂i, ρ̂j) = F
( Mi∑

k=1
ηikρ̂ik,

Mj∑
k=1

ηjkρ̂jk

)
≥

min{Mi,Mj}∑
k=1

√
ηikηjkF

(
ρ̂ik, ρ̂jk

)
(77)

where we have used the joint concavity of the fidelity [9] in the last line of (77). (76) now implies
that

1
2

N∑
i=1

N∑
j;j ̸=i

min{Mi,Mj}∑
k=1

pipj
√
ηikηjkF

(
ρ̂ik, ρ̂jk

)
≤ min

P V M

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

(78)

This inequality shows that a necessary and sufficient condition for fully solving the SQSD optimiza-
tion problem, i.e. for obtaining minP V M

∑N
i=1 pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

= 0, is that ρ̂ik ⊥ ρ̂jk for all i, j, k
where i ̸= j. Otherwise, we run into the possibility of the SQSD being bounded away from zero by
a significant amount. For the case where the ρ̂i are not mixed states the respective relationship is
ρ̂i ⊥ ρ̂j for i ̸= j, which is what we expect from our analysis in the previous section. For the case
where the ρ̂i are finite mixtures of pure states it is perhaps not surprising that one will be required
to analyze the fidelities between elements of any two different mixtures, say ρ̂i and ρ̂j , in order to
determine the discriminability of the mixture

∑N
i=1 ρ̂i. As informative as (78) is, we have yet to learn

anything about the necessary constraints for the fidelities involving multiple elements of the same
mixture ρ̂i, take ρ̂ik and ρ̂il for example. It could be the case that, in principle, there need not be any
restrictions on said fidelities in order to successfully achieve minP V M

∑N
i=1 pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

= 0;
at the moment, however, the latter is unknown to the author.
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We will now be bounding (78) from above. To do this, we will once again take a constructive
approach. Our approach shall be an adaptation of the methods employed in the proof of Theorem
3 and Lemma 2. Constraining ourselves to the case where P̂i are projectors will yield a bound that
will be useful for the cases where ρ̂ik ⊥ ρ̂jk for all k when i ̸= j and ρ̂ik ⊥ ρ̂il for all i when l ̸= k

hold exactly and/or approximately.

Let us now construct a PVM that attempts to solve the SQSD problem on the right-hand side
of inequality (76). We begin by noting that

min
P V M

N∑
i=1

pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

≤ min
P V M

N∑
i=1

Mi∑
k=1

piηik

∥∥∥ρ̂ik − P̂iρ̂ikP̂i

∥∥∥
1

(79)

This looks very similar to the PVM QSD problem for pure states we tackled in the previous two
sections (note that piηik is a probability distribution) with the exception that now each element of
the PVM

{
P̂i

}
i
corresponds to all elements ρ̂ik of the ith element of the kth mixture. Following

the methods from the previous section, one might suggest implementing the gram-schmidt proce-
dure once more in order to obtain an orthonormal set of vectors

∣∣ϕi

〉
, one for each i. However, in

this case, the operators ρ̂i are mixed and therefore do not have a representation as a vector in the
corresponding Hilbert space; being able to view the mixture

∑
i piρ̂i as a single index ensemble of

pure states was one of the key assumptions that lead to Theorem 3. Perhaps there is a way to
implement the Gram-Schmidt process with the end of producing an analog to Theorem 3 in greater
generality by using the Hilbert-Schmidt inner product; in particular for the case where all of the ρ̂i

are mixtures. Unfortunately, the authors are unaware of any such approaches that have been met
with success as of yet.

We now impose the following structural assumption on the P̂i .

P̂i =
Mi∑
k=1

P̂ik (80)

Now, in order to guarantee that a sum such as
∑M

k=1 P̂ik is a projector, we will need to assume that
the P̂ik are all projectors with non-overlapping support.

Proof.

P̂2
i =

( Mi∑
k=1

P̂ik

)2
=

Mi∑
k=1

Mi∑
p=1

P̂ikP̂ip =
Mi∑
k=1

Mi∑
p=1

P̂ikP̂ipδkp =
Mi∑
k=1

P̂ik = P̂i (81)

Since all of the ρ̂ik are pure states, we may apply the Gram-schmidt process in order to construct
a PVM

{
P̂ik

}
ik

. The resulting PVM elements P̂ik, with the inclusion of the completion element
I−
∑

i

∑
k P̂ik, form a PVM that resolves the identity. There are N ×M states ρ̂ik since the index

i ranges from 1 to N and the index k from 1 to M . Let us now visualize the set of these operators
ρ̂ik as a vector as follows.

V⃗ :=
(

ρ̂11 . . . ρ̂1M1 ρ̂21 . . . ρ̂2M2 . . . ρ̂N1 . . . . . . ρ̂NMN

)
. (82)
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Let us now do a relabeling and name the sth component of this vector Vs :=
∣∣ξs

〉〈
ξs

∣∣. Given a
specific value s ∈ {1, 2, ...,

∑N
i=1 Mi} we can use the following formula to obtain the corresponding

ρ̂ik. ∣∣ξs

〉〈
ξs

∣∣ := ρ̂f(s),g(s) (83)

where f(x) := ⌈ x
M ⌉ and g(x) := x modM . Assuming that the

∣∣ξs

〉〈
ξs

∣∣ form a linearly independent
set we now apply the Gram-Schmidt process to obtain the family of orthonormal states

∣∣ϕ1
〉

:=
∣∣ξ1
〉

(84)

∣∣ϕs

〉
:= 1

αs

{∣∣ξs

〉
−

s−1∑
k=1

〈
ϕk

∣∣ξs

〉∣∣ϕk

〉}
, s ∈ {1, 2, ...,

N∑
i=1

Mi} (85)

and as before αi :=
∥∥∣∣ξi

〉
−
∑i−1

k=1
〈
ϕk

∣∣ξi

〉∣∣ϕk

〉∥∥ =
√

1 −
∑i−1

k=1 |
〈
ϕk

∣∣ξi

〉
|2 for i > 1 and α1 = 1 are

the respective normalization constants. An identity resolving PVM
{∣∣ξs

〉〈
ξs

∣∣}
s

⋃{
I−
∑

s

∣∣ξs

〉〈
ξs

∣∣}
has thus been constructed, defining ωs := pf(s)ηf(s),g(s) we may now rewrite and bound

N∑
i=1

Mi∑
k=1

piηik

∥∥∥ρ̂ik − Piρ̂ikPi

∥∥∥
1

(86)

as follows.

∑
s

ωs

∥∥∥∥∣∣ξs

〉〈
ξs

∣∣−
( f(s)+Mf(s)∑

l=f(s)

∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( f(s)+Mf(s)∑
l=f(s)

∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥∥
1

= (87)

∑
s

ωs

∥∥∥∥∥∣∣ξs

〉〈
ξs

∣∣−
∣∣ϕs

〉〈
ϕs

∣∣ξs

〉〈
ξs

∣∣ϕs

〉〈
ϕs

∣∣−
( f(s)+Mf(s)∑

l=f(s);l ̸=s

∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( f(s)+Mf(s)∑
l=f(s);l ̸=s

∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥∥∥
1

≤

(88)∑
s

ωs

∥∥∥∣∣ξs

〉〈
ξs

∣∣−∣∣ϕs

〉〈
ϕs

∣∣ξs

〉〈
ξs

∣∣ϕs

〉〈
ϕs

∣∣∥∥∥
1
+
∑

s

ωs

∥∥∥∥∥(
f(s)+Mf(s)∑
l=f(s);l ̸=s

∣∣ϕl

〉〈
ϕl

∣∣)∣∣ξs

〉〈
ξs

∣∣( f(s)+Mf(s)∑
l=f(s);l ̸=s

∣∣ϕl

〉〈
ϕl

∣∣)∥∥∥∥∥
1

≤

(89)∑
s

ωs2
s−1∑
k=1

|
〈
ϕk

∣∣ξs

〉
| +
∑

s

ωs

f(s)+Mf(s)∑
l=f(s)⌉;l ̸=s

f(s)+Mf(s)∑
k=f(s);k ̸=s

∥∥∥∣∣ϕl

〉〈
ϕl

∣∣ξs

〉〈
ξs

∣∣ϕk

〉〈
ϕk

∣∣∥∥∥
1

= (90)

∑
s

ωs2
s−1∑
k=1

|
〈
ϕk

∣∣ξs

〉
| +
∑

s

ωs

f(s)+Mf(s)∑
l=f(s);l ̸=s

f(s)+Mf(s)∑
k=f(s);k ̸=s

|
〈
ϕl

∣∣ξs

〉〈
ξs

∣∣ϕk

〉
| (91)

where we have used Lemma 2 in going from (89) to (90). Using Lemma 3 we may explicitly write the
terms |

〈
ϕl

∣∣ξs

〉
| as Gram-Schmidt determinants and use these to estimate the efficacy of the PVM

built from (98).
In this work, mixed environmental states as the states of the environmental degrees of freedom are
not the central focus. We shall therefore forego further analysis of the bound (91) at the moment
and leave this for future work. However, we will point out that (91) may be further bounded by the
following term.

(91) ≤ 3
∑

s

ωs

∑
l;l ̸=s

|
〈
ϕl

∣∣ξs

〉
| (92)
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where the only restriction on the sums is that l ̸= s. As already mentioned, this may be better
estimated using Lemma 3. We state the result (91) as a theorem.

Theorem 5. Consider a mixed state of the form
∑N

i=1 piρ̂i,
∑N

i=1 pi = 1, where ρ̂i are all countably-
mixed states,i.e. ρ̂i =

∑Mi

k=1 ηik

∣∣ψik

〉〈
ψik

∣∣ where all of the
∣∣ψik

〉〈
ψik

∣∣ are pure states acting in a
Hilbert space of dimension greater than N and

∑Mi

k=1 ηik = 1. Furthermore, assume that the set{∣∣ψik

〉}
ik

is linearly independent. Then

min
P OV M

N∑
i=1

pi

∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥
1

≤ (93)

2
S∑

s=1
ωs

s−1∑
k=1

|
〈
ϕk

∣∣ξs

〉
| +

S∑
s=1

ωs

f(s)+Mf(s)∑
l=f(s);l ̸=s

f(s)+Mf(s)∑
k=f(s);k ̸=s

|
〈
ϕl

∣∣ξs

〉〈
ξs

∣∣ϕk

〉
| (94)

where ∣∣ξs

〉
:=
∣∣ψf(s),g(s)

〉〈
ψf(s),g(s)

∣∣ (95)

f(x) :=
⌈ x
M

⌉
(96)

g(x) := x modM (97)∣∣ϕ1
〉

:=
∣∣ξ1
〉

(98)

∣∣ϕs

〉
:= 1

αs

{∣∣ξs

〉
−

s−1∑
k=1

〈
ϕk

∣∣ξs

〉∣∣ϕk

〉}
, s ∈ {1, 2, ..., S :=

N∑
i=1

Mi} (99)

and

αi :=
∥∥∣∣ξi

〉
−

i−1∑
k=1

〈
ϕk

∣∣ξi

〉∣∣ϕk

〉∥∥ =

√√√√1 −
i−1∑
k=1

|
〈
ϕk

∣∣ξi

〉
|2 (100)

for i > 1 and α1 = 1 are the respective normalization constants.

Proof. The proof may be found in the preceding discussion.

As a final remark, we point out that a more general mixture of non-pure states
∑

i piρ̂i may be
obtained by considering the case where ρi := Ei

(
ρ̂0
)

(ρ̂0 is a pure state); Ei being arbitrary quantum
maps for all i. In general the ρi := Ei

(
ρ̂0
)

will not be expressable as finite mixtures. If such a case is
encountered we may use (91) only if the ρi := Ei

(
ρ̂0
)

may be approximated by countable mixtures.
In Chapter 5 we will study a case where a mixture of the type

∑
i piEi

(
ρ̂0
)

is encountered. However,
for some of the cases to be studied in Chapter 5, the Ei will be approximately unitary maps and
so we use this to approximate

∑
i piEi

(
ρ̂0
)

with a countable mixture of pure states. More general
cases are still open to further investigation.

6 How general may the B̂k be?

We conclude this subsection with the following corollary. The question it sheds light on is the
following: "How general may B̂ whilst still inducing dynamics (48) which are convergent to and SBS
state?"
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Theorem 6 (Necessary conditions for the convergence to SBS for a broad family of multipartite
states). Consider the setup spanning equations (40) through (48). If for all k, B̂k has a non-empty
Rajchman subspace HEk,rc ([58]), and ρ̂Ek

0 is a finite mixture of pure states in S(HEk,rc), then ρ̂

converges asymptotically in t > 0 to an SBS state with respect to the trace norm topology.

Proof. From the discussion in the previous section, which uses the techniques of Theorems 3 and 4,

we see that the decay of the term
∑NE

k=1
∑dS

i=1 σi

∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂Ek

t
xi

P̂Ek
t

i

∥∥∥∥
1

may be estimated via inner

products of non-equal pure states, i.e.
∣∣〈ϕl

∣∣ξs

〉∣∣ (92) which upon inspecting its associated Gram-
Determinants (see (36 )) one should notice that the rightmost column has solely inner products
of unequal pure states. Furthermore, the term Γ(i, j, t) (47) is a product of inner products of non-

equal pure states. The inner products emanating from both the diagonal terms
∑NE

k=1
∑dS

i=1 σi

∥∥∥∥ρ̂Ek
t

xi
−

P̂Ek
t

i ρ̂Ek
t

xi
P̂Ek

t
i

∥∥∥∥
1

and the off-diagonal terms
∑

i

∑dS

j;j ̸=i

∣∣σi,jΓ(i, j, t)
∣∣ and the diagonal terms are struc-

tural of the form
〈
ψ
∣∣e−itB̂k

∣∣ϕ〉 with
∣∣ψ〉 ∈ HEk,rc and thus we have our result (using the fact that

the Rajchman subspace is a reducing subsapce).

A Quantum State Discrimination

Let
{

Êl

}
l
be a POVM. The operators Êl act over some unspecified Hilbert space. Indeed,

∑
l Êl = I,

∥Êl∥ ≤ 1 and Êl are positive operators that may be written as Êl = M̂†
l M̂l where M̂l are bounded

operators. Now, let ρ̂ be a density operator acting over the same Hilbert space as the POVM
{

Êl

}
l
.

A question arises regarding the positive semidefiniteness of the operator ρ̂ − M̂lρ̂M̂†
l .

Claim 1 (Non positivity of a particular operator). ρ̂−M̂lρ̂M̂†
l is not positive semidefinite in general

Proof. Counter example.

Consider the 2 dimensional case where ρ̂ =
(

1 − δ 0
0 δ

)
(0 ≤ δ ≤ 1) and we have a POVM

characterized by the operator M̂0 = a

(
0.5 0.5
0.5 0.5

)
(a < 1) which is a scaled projector. The PVOM

in question is {
M̂†

0M̂0, I − M̂†
0M̂0

}
. (101)

Let us take a look at the operator
ρ̂ − M̂0ρ̂M̂0 (102)

Expanding things out this looks as follows; in matrix notation.

ρ̂ − M̂0ρ̂M̂0 =
(

1 − δ 0
0 δ

)
− a2

4

(
1 1
1 1

)
=
(

1 − δ − a2

4 − a2

4
− a2

4 δ − a2

4

)
. (103)

For this operator to be positive semidefinite we require that
〈
ϕ
∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣ϕ〉 ≥ 0 hold for
all
∣∣ϕ〉 in the Hilbert space in question. Let us use the unit vector ẽ2 = (0, 1)t. In this case

〈
ẽ
∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣ẽ〉 = δ − a2

4 (104)
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But notice that if δ < a2

4 , which is a viable possibility, then we do not have positive definiteness
for ρ̂ − M̂0ρ̂M̂0.

That is it for the counter-example. Notice that in the case where a = 1, M̂0 is a projector, and
even then we do not have positive definiteness for ρ̂ − M̂0ρ̂M̂0 in general since this breaks down for
δ < 1

4 .

Now, in the paper [39] the authors provide a proof for equation (5) on page 2 of said paper. This
proof involves the computation of a trace distance of the form

∥∥ρ̂ − P̂ρ̂P̂∥1 (where P̂ is a projector)
; see page (1) of the appendix of the same paper and look at the sentence preceding equation (4) of
page one of this appendix. There the authors implicitly argue that

∥∥ρ̂ − P̂ρ̂P̂∥1 = Tr
{

ρ̂(I− P̂)
}

in
general. This, however, is only true if ρ̂ − P̂ρ̂P̂ ≥ 0, and this in turn is true only when P̂ commutes
with ρ̂. It looks like, tacitly, they are assuming that the PVMS, amongst other assumptions, have
the special property that ( now I use their notation) the P̂i projector commute with the ρ̂i terms of
the mixture

∑
i piρ̂i where P̂i is an element of a POVM used to discriminate the mixture

∑
i piρ̂.

This assumption however need not in general be true and the bound by Knill and Barnum [26] does
not assume commutativity for their result that bounds the trace

Tr
{∑

i

piρ̂ −
∑

i

M̂iρ̂M̂†
i

}
(105)

to hold when minimizing over appropriate POVM,
{

M̂i

}
i
, schemes and neither do they assume

that we discriminate with projectors, their result uses the objective function which minimizes over
all POVM. This means that the assumption that P̂i commutes with ρ̂i makes the minimization
calculated in [39] an upper bound to the one proven by Knill and Barnum [26]. Unfortunately
starting from ∥ρ̂i − P̂iρ̂iP̂i∥1 and bounding such an object by fidelities is significantly harder
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