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1 Abstract

We study the linear dependence properties of a set of three canonical curvature
tensor {Rϕ, Rψ, Rτ} under different hypothesis which vary in the dimension of
the vector space we are working with, the ranks of the bilinear forms τ and ψ,
the degeneracy of ϕ, and a few other things such as diagonalization properties
of the bilinear forms we are working with.

2 Introduction

Let V be a real vector space of finite dimension n and let R ε ⊗4V ∗. The
multilinear function R is known as an algebraic curvature tensor if satisfies
the following properties for all w, x, y, zεV :

R(x, y, z, w) = −R(y, x, z, w) (1)

R(x, y, z, w) = R(z, w, x, y) (2)

0 = R(x, y, z, w) +R(x, z, w, y) +R(x,w, y, z) (3)

Definition 1:

Let A(V ) be the vector space of all algebraic curvature tensors and let ϕ
be a bilinear form on V . ϕ is symmetric if ϕ(v, w) = ϕ(w, v) ∀ v, wεV and
positive definite if ∀ vεV ϕ(v, v) ≥ 0 were ϕ(v, v) = 0 only when v = 0. Let ϕ
be a symmetric bilinear form on V . Define Rϕ as follows.

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w) (4)
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It is simple to verify thatRϕ ∈ A(V ). It is known thatA(V ) = Span{Rϕi
|ϕiissymmetric}

[1] . A natural question arises here, given ϕ1, ϕ2, ..., ϕk, ∈ S2(V ) when is the
set Rϕ1 , Rϕ2 , ..., Rϕk

linearly independent?

Definition 2: Define Spec(ψ) as the set of eigenvalues of ψ and |Spec(ψ)|
as the number of distinct elements of Spec(ψ).

Definition 3: Given symmetric bilinear form Q, some basis vector ei is said
to be spacelike if Q(ei, ei) > 0 and timelike if Q(ei, ei) < 0.

Definition 4: If {e−1 , ..., e−p , e+1 , ...e+q } ,were e−i are the timelike vectors and
e+i are the space like vectors,is a basis, then the basis is orthonormal if
Q(e±i , e

±
j ) = ±δij and Q(e−i , e

+
j ) = Q(e+i , e

−
j ) = 0.

Definition 5: A symmetric bilinear form Q with p timelike basis vectors
and q spacelike basis vectors is said to have signature SigQ = (p, q) which is
independent of the orthonormal basis chosen.

Definition 6:The Kernel of a symmetric bilinear form Q is the set kerQ =
{x ∈ V |Q(x, y) = 0}.

Theorem 1.1:[1] Suppose Rank Rankϕ ≥ 3. The Set {Rϕ, Rψ} is linearly
dependent iff Rψ 6= 0, and ϕ = λψ for some real number λ .

Theorem 1.2:[1] Suppose ϕ is positive definite, Rankτ = n, and Rankψ ≥ 3.
If {Rϕ, Rψ, Rτ} is linearly dependent, then ψ and τ are simultaneously orthog-
onally diagonalizable with respect to ϕ

Theorem 1.3:[1] Suppose dim(V ) ≥ 4, ϕ is positive definite, Rankτ = n,
and Rankψ ≥ 3. The set {Rϕ, Rψ, Rτ} is linearly dependent iff one of the
following holds:

(1) | Spec(ψ) |=| Spec(τ) |= 1, or

2)Spec(τ) = {η1, η2, η2, ...}, and Spec(ψ) = {λ1, λ2, λ2, ...}, with η1 6= η2, λ
2
2 =

ε(δη22 − 1),and λ1 = ε
λ2

(δη1η2 − 1) for ε, δ = ±1.

Theorem 1.4: [6]A family of diagonalizable matrices is a commuting family
iff it is a simultaneously diagonalizable family.
In this paper we shall focus on the linear dependence of three algebraic curva-
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ture tensors. Throughout the paper, except for the final chapter, we assume
that ψ and τ are symmetric bilinear forms in order that Rψ and Rτ are both
elements of A(V ). Also, there will be times where we represent a bilinear form
as a matrix and the following will illuminate the process.

Remark: A bilinear form Q with a basis {e1, ..., en} has a matrix repre-
sentation were Q(ei, ej) = aij is the component on the ith column and jth
row.

Ex 1.6: Let Q be a bilinear form with a basis {e1, e2, e3, e4} and Q(ei, ej) = δij.
Then the following is how we represent Q as a matrix:

[Q]→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Just the identity 4× 4 matrix.

3 Linear dependence of the set {Rϕ, Rτ , Rψ} were

ϕ is nondegenerate, Rankψ ≥ 3, Rankτ =

dimV , and dimV ≥ 4.

We begin this section by stating the main theorem tobe proven but prove it
for a specific case first (k = 4).

Theorem 2.1:Assume equation Rϕ = εRψ + δRτ has a solution and let
{e1, ..., ek, f1, ..., fk} be an orthonormal basis (with respect to ϕ) of a vector
space V = V + ⊕

V − were V + = span{f1, ..., fk} and V − = span{e1, ..., ek}
with dimV = n = 2k > 7 (k is an integer) such that, rankψ|V ± ≥ 3 ,
and rankτ |V ± = k. By Theorem 1 we can assume ψ and τ are simul-
taneously diagonalizble on the subspaces V + and V − so we may assume
ψ|V +(f1, f1) = λ1, ψ|V +(fi, fi) = λ2 where i ∈ {2, ..., k} ,ψ|V −(e1, e1) = λk+1,
ψ|V −(ei, ei) = λk+2 i ∈ {k + 1, ..., 2k}, τ |V +(f1, f1) = η1, τ |V +(fi, fi) = η2
i ∈ {2, ..., k} ,η|V −(e1, e1) = ηk+1, τ |V −(ei, ei) = ηk+2 where i ∈ {k + 1, ..., 2k}
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.If η2 6= η6 then ψ and τ are simultaneously diagonalizable with respect to ϕ.

Now we shall consider the case where k = 4.

Proof of Theorem 2.1 for k = 4:We would to know if ψand τ are simulta-
neously diagonalize or not.We look at the matrix representing the entries of
ϕ, ψ, and τ :

[φ] −→



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


[ψ] −→



λ1 $7 $8 $9 a b c d
$1 λ2 $10 $11 e f g h
$2 $3 λ3 $12 i j k l
$4 $5 $6 λ4 m n o p
−a −e −i −m λ5 $13 $14 $15

−b −f −j −n $19 λ6 $16 $17

−c −g −k −o $20 $21 λ7 $18

−d −h −l −p $22 $23 $24 λ8



[τ ] −→



η1 π7 π8 π9 ā b̄ c̄ d̄
π1 η2 π10 π11 ē f̄ ḡ h̄
π2 π3 η3 π12 ī j̄ k̄ l̄
π4 π5 π6 η4 m̄ n̄ ō p̄
−ā −ē −ī −m̄ η5 π13 π14 π15
−b̄ −f̄ −j̄ −n̄ π19 η6 π16 π17
−c̄ −ḡ −k̄ −ō π20 π21 η7 π18
−d̄ −h̄ −l̄ −p̄ π22 π23 π24 η8


Now, recall that we started with a nondegenerate bilinear form ϕ with basis
{e1, e2, ...ep, f1, f2, ...fp}.Decomposing the vector space V into V +⊕V − where
W+ = span{f1, f2, ...fk} and W− = span{e1, e2, ...ek} we can restrict the
linear dependence Rϕ = εRψ + δRτ} to either V + or V − and the correspond-
ing subspace will obey Theorem 1.3. Remark : Given the linear dependence
Rϕ = εRψ + δRτ with Rankψ ≥ 3 and Rankτ = dimV we can conclude that
ψ and τ are simultaneously diagonalize on the subspaces V + and V − using
Theorem 1.3. Hence the following matrices.
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[ψ] −→



λ1 0 0 0 a b c d
0 λ2 0 0 e f g h
0 0 λ3 0 i j k l
0 0 0 λ4 m n o p
−a −e −i −m λ5 0 0 0
−b −f −j −n 0 λ6 0 0
−c −g −k −o 0 0 λ7 0
−d −h −l −p 0 0 0 λ8


[τ ] −→



η1 0 0 0 ā b̄ c̄ d̄
0 η2 0 0 ē f̄ ḡ h̄
0 0 η3 0 ī j̄ k̄ l̄
0 0 0 η4 m̄ n̄ ō p̄
−ā −ē −ī −m̄ η5 0 0 0
−b̄ −f̄ −j̄ −n̄ 0 η6 0 0
−c̄ −ḡ −k̄ −ō 0 0 η7 0
−d̄ −h̄ −l̄ −p̄ 0 0 0 η8


We are a step closer to showing that ψ and τ are simultaneously diagonal-
izable with respect to ϕ on the whole space V . In [4], it is shown that all but
a, b, c, d, ā, b̄, c̄, d̄ are zero. So,

[ψ] −→



λ1 0 0 0 a b c d
0 λ2 0 0 0 0 0 0
0 0 λ2 0 0 0 0 0
0 0 0 λ2 0 0 0 0
−a 0 0 0 λ5 0 0 0
−b 0 0 0 0 λ6 0 0
−c 0 0 0 0 0 λ6 0
−d 0 0 0 0 0 0 λ6


[τ ] −→



η1 0 0 0 ā b̄ c̄ d̄
0 η2 0 0 0 0 0 0
0 0 η2 0 0 0 0 0
0 0 0 η2 0 0 0 0
−ā 0 0 0 η5 0 0 0
−b̄ 0 0 0 0 η6 0 0
−c̄ 0 0 0 0 0 η6 0
−d̄ 0 0 0 0 0 0 η6



We now prove that if η2 6= η6 then ψ and τ are simultaneously diagonalized by
showing that all off diagonal coefficients are zero. Compute Rψ(e1, e2, e2, f1)
and Rψ(e1, f2, f2, f1) gives the following equations:

0 = εaλ2 + δāη2, (5)

0 = εaλ6 + δāη6. (6)

Now multiplying equation 5 by λ6 and equation 6 by λ2 and then subtract-
ing the resulting equations by each other we arrive at the following,where in
Equation 9 we use the eigenvalue relationshipfound in theorem 1.3.

0 = δā(η2λ6 − η6λ2), (7)

0 = δā(η2λ
2
6 − η6λ2λ6), (8)

= δā(η2ε(δη
2
6 − 1)− η6ε(δη2η6 − 1)), (9)

= (̄a)(η2η
2
6 − η2 − η2η26 + eta2) (10)

So, since η2 6= η6,
0 = ā(−η2 + η6). (11)
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ā = 0 (12)

Now if we substitute ā = 0 into equation (2.1) we get the following:

0 = εaλ2 + δ0η2 (13)

0 = εaλ2 (14)

The latter leads us to the fact that a = 0 since λ2 6= 0. By computing
Rϕ(e1, e2, e2, f2) and Rϕ(e1, f3, f3, f2) we get the following.

0 = εbλ2 + δb̄η2 (15)

0 = εbλ6 + δb̄η6 (16)

These latter equations lead to b = 0 = b̄. Similarly we can show that
c = d = c̄ = d̄ = 0 by computing the following pairs (Rϕ(e1, e2, e2, f3),
Rϕ(e1, f2, f2, f3)) and (Rϕ(e1, e2, e2, f4), Rϕ(e1, f2, f2, f4))and using the same
procedure as before.

Note: If η2 = η6 then all of the constants {a, b, c, d, ā, b̄, c̄, d̄} cannot be shown
to be zero. Our next step is to generalize from the specific case of dimV = 8
and sig(ϕ) = (4, 4) to that of dimV = n and sig(ϕ) = (n

2
, n
2
).

4 Rankψ = 2

Given the linear dependence Rϕ + εRψ + δRτ are τ and ψ silmutaneously
diagonalizable?
Theorem 3.1:Let V be a vector space with dimV = 4, ϕ is positive definite,
Rankψ = 2, and Rankτ = dimV . The equation Rϕ = εRψ + εRτ has no
solution.
Proof of Theorem 3.1 preamble:It is of interest to find out wether τ and ψ
are simultaneously diagonalizable or not. Hence, lets assume that ψ and τ are
diagonal to start with and see if Rϕ = εRψ + εRτ holds. Now lets plug in the
following entries into Rϕ(x, y, z, w) = εRψ(x, y, z, w) + εRτ (x, y, z, w).

(x, y, z, w) = (e1, e2, e2, e1), (17)

(x, y, z, w) = (e1, e3, e3, e1), (18)

(x, y, z, w) = (e1, e4, e4, e1), (19)
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(x, y, z, w) = (e2, e3, e3, e2), (20)

(x, y, z, w) = (e2, e4, e4, e2), (21)

(x, y, z, w) = (e3, e4, e4, e3), (22)

Which give the following results respectively..

1 + ελ1λ2 = δη1η2 (23)

1 = δη1η3 (24)

1 = δη1η4 (25)

1 = δη2η3 (26)

1 = δη2η4 (27)

1 = δη3η4. (28)

By manipulating equation 23 through 28 we conclude that η1 = η2 = η3 = η4
which consequently implies that δ = 1. But if δ = η1 = ... = η4 = 1 then
λ1λ2 = 0. Since Rankψ was hypothesized to be 2 the latter is a contradiction.
It seems that if we begin by assuming ψ and τ are diagonal we arrive at a con-
tradiction. In the next section we begin by only assuming that ψ is diagonal
and τ is not.

Proof of theorem 3.1 : In this case τ is not assumed to be diagonal and we
would like to know what the off diagonal entries are. The following is the
matrix representation of τ ,


η1 a b c
a η2 d e
b d η3 f
c e f η4


Lets begin by extracting some equations from Rϕ(x, y, z, w) = εRψ(x, y, z, w)+
εRτ (x, y, z, w).
Plugging in

(x, y, z, w) = (e1, e2, e2, e1), (29)

(x, y, z, w) = (e1, e3, e3, e1), (30)

(x, y, z, w) = (e1, e4, e4, e1), (31)

(x, y, z, w) = (e2, e3, e3, e2), (32)
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(x, y, z, w) = (e2, e4, e4, e2), (33)

(x, y, z, w) = (e3, e4, e4, e3), (34)

(x, y, z, w) = (e1, e3, e2, e4), (35)

(x, y, z, w) = (e1, e2, e3, e4), (36)

(x, y, z, w) = (e4, e1, e2, e3), (37)

(x, y, z, w) = (e1, e3, e3, e4), (38)

(x, y, z, w) = (e1, e2, e2, e4), (39)

(x, y, z, w) = (e2, e4, e4, e3), (40)

(x, y, z, w) = (e2, e1, e1, e3), (41)

(x, y, z, w) = (e1, e2, e2, e3), (42)

produces the following useful equations respectively:.

1 + ελ1λ2 = δη1η2 − δa2, (43)

1 = δη1η3 − δb2, (44)

1 = δη1η4 − δc2, (45)

1 = δη2η3 − δd2, (46)

1 = δη2η4 − δe2, (47)

1 = δη3η4 − δf 2, (48)

0 = δ(cd− af), (49)

0 = δ(cd− be), (50)

0 = δ(fa− be), (51)

0 = δ(cη3 − bf), (52)

0 = δ(cη2 − ae), (53)

0 = δ(dη4 − ef), (54)

0 = δ(dη1 − ab), (55)

0 = δ(η2b− ad). (56)

From Equations 49, 50, and 51 one can see that

cd = af = be (57)
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Its hard to know what a, b, c, d, e, and f should be at this point but with use of
the fact that Rankψ = 2 we can narrow it down. We can take an orthonormal
basis for Kerψ : e3, e4 and extend it to an orthonormal basis e1, e2, e3, e4. Let

f1 = e1 (58)

f2 = e2 (59)

f3 = cosθe3 + sinθe4 (60)

f4 = −sinθe3 + cosθe4. (61)

Therefore
[ψ]f = ψ. (62)

Also notice that there exist a θ such that the (3, 4) position is zero in the
matrix of τ . Namely, if f 6= 0, then with respect to this new basis f = 0.

cot2θ =
η3 − η4

2f
(63)

Therefore,

[τ ]→


η1 ā b̄ c̄
ā η2 d̄ ē
b̄ d̄ η̄3 0
c̄ ē 0 η̄4

.

If the latter is the case then by equation 57

c̄d̄ = 0 = b̄ē. (64)

One of the cases to consider here is the case

d̄ = 0 = ē. (65)

If the later is so then

η2 = η̄4 = η̄3 = ±1andδ = 1 (66)

but the latter implies that b = c = 0.
Now, due to Rϕ(e1, e3, e3, e2) we arrive at

0 = δ(āη̄3 − b̄d̄) (67)

which leads to ā = 0. Finally, due to equation 43 we arrive at the following
contradiction.

ελ1λ2 = 0. (68)

The latter uses the fact that δ = 1 and η1η2 = 1. Since we originally assumed
that Rankψ = 2 the fact that at least one of λ1 and λ2 must be zero is a
contradiction to the original assumption since then Rankψ would have to be
one or two. In the next section we prove that theorem 3.1 holds for n ≥ 5.
QED
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5 dimV ≥ 5

Theorem 4.1: Let V be a vector space with dimV ≥ 5, ϕ is positive definite,
Rankψ = 2, and Rankτ = dimV . The set {Rϕ, Rψ, Rτ} is never linearly de-
pendent.

Proof :Lets begin by choosing a basis {ei} such that ψ is diagonal with ψij = 0
for all entries except ij = 11 and ij = 22 where ψij = ψ(ei, ej) and ϕ remains
positive definite.
If we assume that the set {Rϕ, Rψ, Rτ} is linearly dependent then we have the
following relation which results in several cases:

c1Rϕ + c2Rψ + c3Rτ = 0. (69)

No 2 of ci can be 0, either. Case 1: If only c1 = 0 we have the case where

c2Rψ = −c3Rτ (70)

which is impossible since Rankψ = 2, Rankτ = n, and n > 2.

Case 2: If only c2 = 0 gives us the following:

Rϕ =
−c3
c1

Rτ (71)

But by theorem 1.3 results we can conclude that τ is a multiple of ϕ, which
has been assumed not to be the case.

Case 3: With c3 = 0 we run into a similar scenario to case 1.

c1Rϕ + c2Rψ = 0 (72)

Which is impossible since Rankψ = 2, Rankϕ = n, and n > 2.

Case 4: c1, c2, c3 are all non zero.
It is a result of linear algebra that two operators commute iff they are simul-
taneously diagonalizable. Notice that if we only consider the subspace kerψ
then it is indeed true that ψ and τ will commute and therefore there must be a
change of basis that will make τ diagonal in kerψ.On kerψ τ(ei, ej) = ηij when
i = j and zero otherwise. By computing Rϕ(e3, ej, ej, e3) = εRψ(e3, ej, ej, e3)+
δRτ (e3, ej, ej, e3) withj 6= 3, 2, 1 we arrive at the following.

1 = δη3ηj, j 6= 3, 2, 1. (73)
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The latter equations results in η4 = η5 = ... = ηn.

Next we computeRϕ(e4, ej, ej, e4) = εRψ(e4, ej, ej, e4)+δRτ (e4, ej, ej, e4)withj 6=
4, 2, 1 which results in the following.

1 = δη4ηj, j 6= 4, 2, 1 : (74)

The latter results in η3 = η5 = ... = ηn. Together, η3 = η5 = ... = ηn
and η4 = η5 = ... = ηn imply η3 = η4 = ... = ηn. From 73 we know that
1 = δη3η4 = δη23. Since η23 is nonnegative, hence δ = +1. We now have the
relation η3 = 1 which leads to η3 = η4 = ... = ηn = 1.

Now we will compute Rϕ(e4, e1, e3, e4) = εRψ(e4, e1, e3, e4) + δRτ (e4, e1, e3, e4).
The result is

0 = δ(η4a13 − a43a14). (75)

But a43 = 0 since it is an off diagonal element of τ in the kerψ. Consequently
from 75 we have η4a13 = 0, but since η4 = 1 we have a13 = 0.
Similarly we will show that a23 = 0 by computingRϕ(e4, e2, e3, e4) = εRψ(e4, e2, e3, e4)+
δRτ (e4, e2, e3, e4). The result is

0 = δ(η4a23 − a43a24). (76)

Recall that a43 = 0.From 76 we have η4a23 = 0, but since η4 = 1 we have
a23 = 0. The fact that a13 = a23 = 0 plays an important role in the following
step.

Lets now compute both Rϕ(e3, e1, e1, e3) and Rϕ(e3, e2, e2, e3). The results
are as follows, respectively:

1 = δ(η1η3 − a213), (77)

1 = δ(η2η3 − a223). (78)

But a13 = a23 = 0, δ = 1, and η3 = 1. Therefore,

1 = η1, (79)

1 = η2. (80)

We now have the important fact that η1 = η2 = ... = ηn = 1. Before we arrive
at our conclusion we need one more result.
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Computing Rϕ(e1, e3, e3, e2) we arrive at the following:

a12η3 = a13a32 (81)

But a13 = 0 and η3 = 1.
Therefore,

a12 = 0. (82)

But a12 = a21 since τ is symmetric. Thus, a12 = a21 = 0.

To conclude, we compute Rϕ(e1, e2, e2, e1) were λ1 = ψ(e1, e1) and λ2 =
ψ(e2, e2) are the diagonal and only non zero elements of ψ. The result fol-
lows:

1 = ε(λ1λ2) + δ(η1η2 − a212) (83)

But δ = 1, a12 = 0, and η1η2 = 1. Therefore 85 takes the following form.

1 = ε(λ1λ2) + 1 (84)

Which implies that
λ1λ2 = 0. (85)

But the latter implies that either λ1 = 0, λ2 = 0, or λ1 = λ2 = 0. All of
the stated cases lead us to a contradiction because we started out with the
assumption that Rankψ = 2 and that consequently implied that λ1 and λ2
were nonzero. The case were n = 4 was discussed in the prior section and the
case were n = 3 will be discussed in the next chapter.

6 dimV = 3

The case dimV = 3 with Rankψ = 2 requires special attention since here
dimKer(ψ) = 1 and cannot be manipulated in order to argue that one of the
of diagonal terms of τ can be zero like we did in dimV = 4.

Observation 5.1: If we assume τ and ψ to be simultaneously diagonal then
we get the following equations that the eigenvalues of τ and η must satisfy:

1 + ελ1λ2 = δη1η2 (86)

1 = δη1η3 (87)

1 = δη2η3 (88)

12



Now, in the case were we do not assume τ and ψ to be simultaneously diag-
onalizable we have the following equations relating the eigenvalues of ψ and
the entries of τ .

1 + ελ1λ2 = δη1η2 − δa2 (89)

1 = δη1η3 − δb2 (90)

1 = δη2η3 − δc2 (91)

0 = aη3 − cb (92)

0 = ab− η1c (93)

0 = ac− η2b. (94)

Ex 5.2 The latter set of equations are satisfied if τ and ψ are as follows:

[ψ]→


1
3

0 0
0 9 0
0 0 0

 [τ ]→

 2 0 0
0 2 0
0 0 5

.

The case were Rankψ = 3 with dimV = 3 is more complicated with more
unknowns. Figuring out a more illuminating way to narrow down the solu-
tions for the unknowns in Rankψ ≤ 3 with dimV = 3 is an interesting open
question.

7 positive definite ϕ, Rankψ ≥ 3, Rankτ <

dimV

As stated before, it is known that if {Rϕ, Rψ, Rτ} are linearly dependent then
τ and ψ are simultaneously diagonalize under the conditions dimV ≥ 4,ϕ is
positive definite, Rankψ ≥ 3,and Rankτ = dimV .If replace the last condition
with τ < dimV maintains the property of ψ and τ being simultaneously dio-
gonalizable. First we need a definition.

Definition 6.1: Let Ag be the generalized inverse of a no invertible oper-
ator A, then the following relation shows how to calculate Ag.

AAgA = A (95)

Now on to the main result, whose proof is unfinished..

Conjecture 6.2: If {Rϕ, Rψ, Rτ} are linearly dependent then τ and ψ are
simultaneously diagonalize under the conditions dimV ≥ 4,ϕ is positive defini-
tie, Rankψ ≥ 3,Rankτ < dimV .
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Method for possible proof : In order to show that τ and ψ are simultaneously
diagonalizable we must show that τψ = ψτ . Lets manipulate the linearly
dependent set {Rϕ, Rψ, Rτ}:

Rϕ(τ 2x, τ 2y, τ gτz, τ gτw) = Rϕ(x, y, τz, τw) (96)

Rψ(τ 2x, τ 2y, τ gτz, τ gτw) = Rτg∗ψτ (x, y, τz, τw) (97)

Rτ (τ
2x, τ 2y, τ gτz, τ gτw) = Rτ (x, y, τz, τw) (98)

Therefore

Rϕ(x, y, τz, τw) = εRτg∗ψτ (x, y, τz, τw) + δRτ (x, y, τz, τw). (99)

The latter implies that Rτg∗ψτ (x, y, τz, τw) = Rψ(x, y, τz, τw). Which can be
rewritten as Rτg∗ψτ2(x, y, z, w) = Rψτ (x, y, z, w). Hence,

τ g∗ψτ 2 = ±ψτ. (100)

Equation 99 can be re written as follows:

Rτ (x, y, z, w)− δRτ2(x, y, z, w) = εRτg∗ψτ2(x, y, z, w) (101)

The latter implies that Rτg∗ψτ2 is an algebraic curvature tensor and therefore
it is a fact that τ g∗ψτ 2 = (τ g∗ψτ 2)∗. Finally, by equation 100 and the latter
it could potentialy be show that

ψτ = τψ. (102)

The main issues in this proof attempt are found in Equation’s 100 and 99. We
have relied on inputs of the form (x, y, τz, τw) rather than the more general
(x, y, z, w) and overlooked the sign uncertainty in Equation 100.

8 Conclusion

This document has presented us a theorem that looks at rankψ = 2 under
similar conditions as [2] except for the fact that we start of by assuming that
ψ is diagonal. It is from [2] that the latter was inspired. In [4] there was the
unresolved issue of wether τ and ψ were simultaneously diagonalizable with
respect to a non degenerate ϕ and in this paper we managed to come up with
a condition that would enable us to have simultaneous diagnaolization. We
ended with a few observations and a conjecture. The observation was the array
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of equations that characterize the matrix components of ψ and τ in dimV = 3
and Rankψ = 2, there was no method i could think of to narrow down a neater
set of solutions. Finally, it was conjectured that under an identical hypothesis
except to theorem 1.3 except for Rankτ < n we would still have simultaneous
diagonalization of τ and ψ. The remark and conjecture in the last two sections
must still be resolved (also, a general proof for theorem 2.1 is required).

9 Open Questions

There are a few open questions that i have asked throughout the paper but
here are a few more.
1.What happens if ψ and τ are both uninvertible?

2.Are four distinct canonical curvature tensors ever linearly dependent, are
five? Is there some sort of pattern or behavior that distinguishes an even col-
lection in the set that is assumed to linearly dependent and an odd collection?

3.Will theorem 3.1 and theorem 4.1 still hold if ψ was not assume to be
diagonal?
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