$$
H(t)|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

Quantum

Lie algebras and

Dissipation

Alberta Accueda

Classical mechanics

- $x(t)$
- $F(t, x)=m(t, x) a(t)$
- $a=\frac{d^{2}}{d t^{2}} x(t)$
- $m(t, x) \frac{d^{2}}{d t^{2}} x(t)-F(t, x)=0$

Fancy!

- $T=$ Kinetic energy
- $V=$ Potential energy
- $L=T-V$
- $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} \quad$ Lagrangian

- $H=T+V \quad$ Hamiltonian
- $\frac{d p}{d t}=-\frac{\partial H}{\partial x}$
$\frac{d x}{d t}=-\frac{\partial H}{\partial p}$

Quantum mechanics

- $x(t) ? ?$
- NO!!!!!!!!
- $|\psi(t)\rangle$ Kets!

- $|\psi(t)\rangle=\alpha(t) \mid$ Dead $\rangle+\beta(t) \mid$ Alive \rangle
- $|\alpha(t)|^{2}=$ Probability of dead kitty.
- $|\beta(t)|^{2}=$ Probability of living kitty.

The time dependent Schrödinger equation.

Letting planks constant equal one.

$$
\begin{aligned}
& i \frac{d}{d t}|\psi(t)>=H(t)| \psi(t)> \\
& i \frac{d}{d t} U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)>=H(t) U\left(t, t_{0}\right)\right| \psi\left(t_{0}\right)> \\
& i \frac{d}{d t} U\left(t, t_{0}\right)=H(t) U\left(t, t_{0}\right) \\
& i \frac{d}{d t} U(t)=H(t) U(t)
\end{aligned}
$$

Time Development

Case 1: H is time independent.

$$
U(t)=e^{-i H t}
$$

Case 2: H is time dependent and commutes with itself at different times.

$$
U(t)=e^{-i \int_{0}^{t} H(t) d t}
$$

Case 3: H is time dependent!! Hard problem because operators do not commute in general.

$$
A B \neq B A
$$

Lie Algebra method

$$
\begin{gathered}
H(t)=\sum_{=0}^{n} f(t)_{n} A_{n} \\
\left\{\mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\} \mathrm{m}>\mathrm{n} \\
{[\mathrm{~A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA}} \\
i\left(\frac{d}{d t} U\right) U^{-1}-H=0 \\
U(t)=e^{\alpha_{1}(t) A_{1}} e^{\alpha_{2}(t) A_{2}} \ldots e^{\alpha_{n}(t) A_{n}} \\
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
\end{gathered}
$$

SHO

$$
\begin{aligned}
& H=\omega\left(N+\frac{1}{2}\right) \quad\{N, \mathbb{1}\} \\
& i \dot{U}(t) U(t)^{-1}-H=0 . \\
& U(t)=e^{\alpha(t) N} e^{\beta(t) \mathbb{1}} \\
& i \dot{U} U^{-1}=i \dot{\alpha} N+i \dot{\beta} \mathbb{1}
\end{aligned}
$$

$$
i \dot{U} U^{-1}-H=(i \dot{\alpha}-\omega) N+\left(i \dot{\beta}-\frac{1}{2} \omega\right) \mathbb{1}=0
$$

$$
\begin{aligned}
& i \dot{\alpha}-\omega=\alpha(t) \\
&=-i \omega t \\
& i \dot{\beta}-\frac{1}{2} \omega=\beta(t)
\end{aligned}=-\frac{i \omega t}{2} .
$$

$$
U=e^{-i \omega t N} e^{-\frac{i \omega t}{2} \mathbb{1}}=e^{-i H t}
$$

Optomechanics

$$
\left.H=\omega_{m} b^{\dagger} b+\omega_{c} a^{\dagger} a-G N+f(t)^{\dot{(}} b^{\dagger}+b\right)
$$

Basis $=\left\{N, b, b^{\dagger}, b^{\dagger} b, N^{2}, N b^{\dagger}, N b \mathbb{1}\right\}$

$$
U=e^{\alpha N^{2}} e^{\beta N b} e^{\delta b} e^{\zeta b^{\dagger}} e^{\eta N b^{\dagger}} e^{\xi N} e^{\sigma b^{\dagger} b} e^{\tau \mathbb{1}}
$$

$$
i \dot{\alpha}+i \beta \dot{\eta}-i \beta \eta \dot{\sigma}=0
$$

$$
G+i \dot{\beta}+i \beta \dot{\sigma}=0
$$

$$
-f(t)+i \dot{\delta}+i \delta \dot{\sigma}=0
$$

$$
-f(t)+i \dot{\zeta}+i \zeta \dot{\sigma}=0
$$

$$
G+i \dot{\eta}-i \eta \dot{\sigma}=0
$$

$$
-\omega_{c}+i \beta \dot{\zeta}+i \delta \dot{\eta}+i \dot{\xi}-i \beta \zeta \dot{\sigma}-i \delta \eta \dot{\sigma}=0
$$

$$
-\omega_{m}+\dot{\sigma}=0
$$

$$
i \delta \dot{\zeta}-i \delta \zeta \dot{\sigma}+i \dot{\tau}=0
$$

Recall systems of equations

$$
\begin{aligned}
& 3 x+2 y-4 z=17 \\
& 3 x+3 y-3 z=18 \\
& -3 x+3 y-4 z=1
\end{aligned}
$$

Systems of differential equations

$$
\begin{aligned}
i \dot{\alpha}+i \beta \dot{\eta}-i \beta \eta \dot{\sigma} & =0 \\
G+i \dot{\beta}+i \beta \dot{\sigma} & =0 \\
-f(t)+i \dot{\delta}+i \delta \dot{\sigma} & =0 \\
-f(t)+i \dot{\zeta}+i \zeta \dot{\sigma} & =0 \\
G+i \dot{\eta}-i \eta \dot{\sigma} & =0 \\
-\omega_{c}+i \beta \dot{\zeta}+i \delta \dot{\eta}+i \dot{\xi}-i \beta \zeta \dot{\sigma}-i \delta \eta \dot{\sigma} & =0 \\
-\omega_{m}+\dot{\sigma} & =0 \\
i \delta \dot{\zeta}-i \delta \zeta \dot{\sigma}+i \dot{\tau} & =0
\end{aligned}
$$

Solution for the time evolution operator of optomechanics

$$
\alpha=\frac{G^{2}\left(1-e^{i \omega_{m} t}+i \omega_{m}\right)}{\omega_{m}^{2}}
$$

$$
\beta=\frac{-1+e^{i \omega_{m} t}}{\omega_{m}}
$$

$$
\delta=-e^{i \omega_{m} t}\left(\int_{1}^{0}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime}-\int_{1}^{t}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime}\right)
$$

$$
\zeta=-e^{i \omega_{m} t}\left(\int_{1}^{0}-i e^{i \omega_{m} t^{\prime \prime \prime \prime}} f\left(t^{\prime \prime \prime \prime}\right) d t^{\prime \prime \prime \prime}-\int_{1}^{t}-i e^{i \omega_{m} t^{\prime \prime \prime \prime}} f\left(t^{\prime \prime \prime \prime}\right) d t^{\prime \prime \prime \prime}\right)
$$

$$
\eta=\frac{e-i \omega_{m} t\left(-1+e^{i \omega_{m} t}\right) G}{\omega_{m}}
$$

$$
\begin{aligned}
\xi & =\frac{1}{\omega_{m}}\left(-i \omega_{c} \omega_{m}-G \int_{1}^{0}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime}+\right. \\
& +e^{i \omega_{m}} G \int_{1}^{0}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime}-\omega_{m} \int_{1}^{0}-\frac{i G f\left(t^{\prime \prime}\right)}{\omega_{m}} d t^{\prime \prime}- \\
& -\omega_{m} \int_{1}^{0} \frac{i e^{i \omega_{m} t^{\prime \prime}} G f\left(t^{\prime \prime}\right)}{\omega_{m}} d t^{\prime \prime}-\omega_{m} \int_{1}^{0}-i e^{-i \omega_{m} t^{\prime \prime}} G \int_{1}^{t^{\prime \prime}}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d k(1) d t^{\prime \prime} \\
& +\omega_{m} \int_{1}^{t} \frac{-1}{\omega_{m} i}\left(\omega_{c} \omega_{m}+G f\left(t^{\prime \prime}\right)-e^{i \omega_{m} t^{\prime \prime}} G f\left(t^{\prime \prime}\right)-\right. \\
& -\omega_{m} e^{i \omega_{m} t^{\prime \prime}} G \int_{1}^{0}-i e^{-i \omega_{m} k(1)} f\left(t^{\prime}\right) d t^{\prime}+ \\
& \left.\left.+\omega_{m} e^{i \omega_{m} t^{\prime \prime}} G \int_{1}^{t^{\prime \prime}}-i e^{-i \omega_{m} k(1)} f\left(t^{\prime}\right) d t^{\prime}\right) d t^{\prime \prime}\right)
\end{aligned}
$$

$\tau=-\int_{1}^{0}-e^{i \omega_{m} t^{\prime \prime \prime}} f\left(t^{\prime \prime \prime}\right) \int_{1}^{0}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime} d t^{\prime \prime \prime}-$
$-\int_{1}^{0} i e^{i \omega t^{\prime \prime \prime}} f\left(t^{\prime \prime \prime}\right) \int_{1}^{t^{\prime \prime \prime}}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime} d t^{\prime \prime \prime}+$
$+\int_{1}^{t} i e^{i \omega_{m} t^{\prime \prime \prime}} f\left(t^{\prime \prime \prime}\right)\left(-\int_{1}^{0}-i e^{-i \omega k(1)} f\left(t^{\prime}\right) d t^{\prime}+\right.$
$\left.+\int_{i}^{t^{\prime \prime \prime}}-i e^{-i \omega_{m} t^{\prime}} f\left(t^{\prime}\right) d t^{\prime}\right) d t^{\prime \prime \prime}$

$$
\sigma=-i \omega_{m} t
$$

Is this manageable?

$$
\begin{aligned}
& f(n, m)=m \frac{(n+2)(2 n+1)}{2} \\
& g(n, m)=m(2 n+1)+\frac{n^{2}+3 n}{2}
\end{aligned}
$$

Not by Hand!

Dissipation in quantum mechanics.

$$
\begin{aligned}
& H=N+\frac{1}{2} \\
& H=H_{0} \cosh \left(\frac{\gamma t}{2}\right)+\frac{1}{2}\left(a^{\dagger} a\right) \sinh \left(\frac{\gamma t}{2}\right) \\
& \left\{H_{0},\left(a^{\dagger}\right)^{2}, a^{2}\right\} \\
& -\frac{1}{2} \sinh \left(\frac{\gamma t}{2}\right)+i \dot{\alpha}-2 i \dot{\beta} \alpha+4 i \dot{\delta}^{2} a^{2} e^{-2 \beta}
\end{aligned}=0 .
$$

Aknowlegements

, The NSF for its support and funding.

- The Brigham Young University physics department for the hospitality and giving me the opportunity to work with them.
- My advisors Dr.Jean-Francois Van Huele and Dr. Manuel Berondo.
- Ty Beaus for his guidance
- The Physics and Mathematics faculty at my home school Cal State San Bernardino.

