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The Ammonia Molecule, Example
of Closed Quantum Systems.



The Ammonia Molecule, an example of a closed
quantum system.

Hamiltonian

H→
(
E0 −ε
−ε E0

)
=

(
〈1|H|1〉 〈1|H|2〉
〈2|H|1〉 〈2|H|2〉

)

Let us solve SE for |ψ(0)〉 = |1〉

i~∂t|ψ(t)〉 = H|ψ(t)〉
|ψ(t)〉 = U(t)|ψ(0)〉
U(t) = e

−iHt
~
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Ammonia Molecule continued

Solution
|ψ(t)〉 = e

−iE0t
~ (cos( εt~ )|1〉+ i sin( εt~ )|2〉), superposition principle at

work.

State Matrix

ρ(t) = |ψ(t)〉〈ψ(t)| →
(

cos2( εt~ ) −i cos( εt~ ) sin( εt~ )
i sin( εt~ )cos( εt~ ) sin2( εt~ )

)

Time evolution of Tr[ρ(t)σz]

3 49



Ammonia Molecule continued

Solution
|ψ(t)〉 = e

−iE0t
~ (cos( εt~ )|1〉+ i sin( εt~ )|2〉), superposition principle at

work.

State Matrix

ρ(t) = |ψ(t)〉〈ψ(t)| →
(

cos2( εt~ ) −i cos( εt~ ) sin( εt~ )
i sin( εt~ )cos( εt~ ) sin2( εt~ )

)

Time evolution of Tr[ρ(t)σz]

3 49



Ammonia Molecule continued

Solution
|ψ(t)〉 = e

−iE0t
~ (cos( εt~ )|1〉+ i sin( εt~ )|2〉), superposition principle at

work.

State Matrix

ρ(t) = |ψ(t)〉〈ψ(t)| →
(

cos2( εt~ ) −i cos( εt~ ) sin( εt~ )
i sin( εt~ )cos( εt~ ) sin2( εt~ )

)

Time evolution of Tr[ρ(t)σz]

3 49



Ammonia Molecule continued

Solution
|ψ(t)〉 = e

−iE0t
~ (cos( εt~ )|1〉+ i sin( εt~ )|2〉), superposition principle at

work.

State Matrix

ρ(t) = |ψ(t)〉〈ψ(t)| →
(

cos2( εt~ ) −i cos( εt~ ) sin( εt~ )
i sin( εt~ )cos( εt~ ) sin2( εt~ )

)

Time evolution of Tr[ρ(t)σz]

3 49



Coherences

Coherences
ρij(t) , i 6= j, are quantum coherences. Their presence is in general
a byproduct of the superposition principle.

Coherences in closed systems
For the Ammonia molecule, |ρ12(t)| = ρ21(t) = cos( εt~ ) sin( εt~ ). Note
the periodic behavior. Closed systems have periodic coherences.

Quantum computation
Quantum coherence is a vital cornerstone to the theory of
quantum computation and quantum information. Quantum
information is stored within quantum states and the
superpostion principle is exploited in order to boost
computational speed.
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Open quantum systems



Open quantum systems

Total system has some Hilbert space HS ⊗HE

|ψS〉 ⊗ |ψE〉 := |ψSE〉 ∈HS ⊗HE := Htot.

Dynamics provided by Schrödinger’s equation.
i~∂t|ψSE(t)〉 = H|ψSE(t)〉 where H = HS + HE + HI, a Hermitian
operator in B(HSE).

|ψSE(t)〉 = e−
it
~H. Just like before.

We can attain the reduced dynamics by partial tracing over
the degrees of freedom pertaining to the environment. i.e.

ρS(t) := TrE{|ψSE(t)〉〈ψSE(t)|}
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Partial Trace

Definition
TrE{} : T(HS ⊗HE)→ T(HS)

TrE{|ψSE(t)〉〈ψSE(t)|} :=
∑
k

〈φk|ψSE(t)〉〈ψSE(t)|φk〉,

where {|φk〉}k is an ONB for HE.

Let use make sure that this map is the correct one.

AS → AS ⊗ IE,

〈AS ⊗ IE〉 = Tr{ρSE(AS ⊗ IE)}.
But it can be shown that

Tr{ρSE(AS ⊗ IE)} = Tr{ρSAS}!!!!.

6 49



Partial Trace

Definition
TrE{} : T(HS ⊗HE)→ T(HS)

TrE{|ψSE(t)〉〈ψSE(t)|} :=
∑
k

〈φk|ψSE(t)〉〈ψSE(t)|φk〉,

where {|φk〉}k is an ONB for HE.

Let use make sure that this map is the correct one.

AS → AS ⊗ IE,

〈AS ⊗ IE〉 = Tr{ρSE(AS ⊗ IE)}.
But it can be shown that

Tr{ρSE(AS ⊗ IE)} = Tr{ρSAS}!!!!.

6 49



Partial Trace

Definition
TrE{} : T(HS ⊗HE)→ T(HS)

TrE{|ψSE(t)〉〈ψSE(t)|} :=
∑
k

〈φk|ψSE(t)〉〈ψSE(t)|φk〉,

where {|φk〉}k is an ONB for HE.

Let use make sure that this map is the correct one.

AS → AS ⊗ IE,

〈AS ⊗ IE〉 = Tr{ρSE(AS ⊗ IE)}.
But it can be shown that

Tr{ρSE(AS ⊗ IE)} = Tr{ρSAS}!!!!.

6 49



Product state

Product state as an initial state
Assume our initial state to be in a product state.
ρSE(0) = ρS(0)⊗ ρE(0) ∈ D(HSE) := Space of trace class
operators over HSE with trace one.

Diagonalizing the environmental component
ρE(0) =

∑
i pi|Ei〉〈Ei|.

Non-Unitary Time Evolution
ρS(t) = TrE{U(t)(ρSE(0))U†(t)} =

∑
ij pi〈Ej|U(t)|Ei〉ρS(0)〈Ei|U†(t)|Ej〉.

We short hand this evolution as νtρS(0) = ρS(t). (Dynamical map).
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Krauss operators and completely positive maps.

Krauss operators
The operators 〈Ej|U(t)|Ei〉 ∈ B(HS) are referred to as krauss
operators. These operators characterize the dynamical map seen
in the previous slide.

Definition
A map νt := D(HS)→ D(HS)is said to be a dynamical map if it is
a completely positive map, has convex linearity and is trace
preserving.

Complete positivity
νt ⊗ In required to be positive for all n. Without the latter we
could end up mapping from positive operators to operators
which are not (Negative probabilities).
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Continued

Convex Linearity, evolving mixed states.
νt{λρS1(0) + (1− λ)ρS2(0)} = λνtρS1(0) + (1− λ)νtρS2(0).

Trace preservation.
Tr{νtρS(0)} = 1.
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Two ways to find evolved reduced dynamics.

The unitary evolution and partial trace approach.
νtρS(0) = TrE{U(t)ρSE(0)U†}

Partial trace of Von Neumann equation approach
∂
∂tρSE(t) = − i

~ [HSE, ρSE(t)]→ ∂
∂tρS(t) = − i

~TrE{[HSE, ρSE(t)]}
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Reduced Von Neumann equation. Path to Born-
Markov master equation.

Von Neumman: ∂
∂tρSE(t) = − i

~ [HSE, ρSE(t)].

Interaction picture: τ(...) := e−
i
~ (HS+HE)(...)e

i
~ (HS+HE).

Von Neumann in interaction picture (IP):
∂
∂tτ(ρSE)(t) = − i

~ [τ(HI), τ(ρSE)(t)]

Reduced Von Neumann in IP, dropping τ for readability:
∂
∂tρS(t) = − i

~TrE{[HI(t), ρSE(t)]}

Equivalently.
∂

∂t
ρS(t) = − i

~
TrE{[HI, ρSE(0)]}+

+
i2

~2

∫ t

0
dt1TrE{[HI(t), [HI(t1), ρSE(t1)]]}
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Continued

We will work with product state initial conditions.
ρSE(0) = ρS(0)⊗ ρE(0). i.e. There are no correlations
between the system and the environment. Good
approximation for weakly interacting systems.

Born approximation
Assuming that the system only weakly a�ects the bath it is
permissible to replace ρS(t1)⊗ ρE(t1) by ρS(t1)⊗ ρE(0).

The Markov approximation
In order for the reduced Von Neumann equation to be Markovian
the integrand must be smooth and sharply peaked in the vicinity
of t ≈ t1. If this holds than we may trade in ρS(t1)⊗ ρE(0) for
ρS(t)⊗ ρE(0).
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Continued

Born-Markov master equation

∂

∂t
ρS(t) = − i

~
TrE{[HI, ρS(0)⊗ ρE(0)]}+

+
i2

~2

∫ t

−∞
dt1TrE{[HI(t), [HI(t1), ρS(t)⊗ ρE(0)]]}
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Decoherence Models



Two-level system in a bath

Let E be a large, with respect to the system, bosonic bath
and S be a two-level system. With a dipole interaction term
the dynamics is generated by the Hamiltonian.

HSE = ~ωa
2 σz + ~

∑
k ωkb

†
kbk + ~

∑
k(gkbk + gkb

†
k)(σ+ + σ−)

Assuming that the two level system is in the excited state at
t = 0 we can use the Born-Markov approximation to arrive at
the following equation.

∂

∂t
ρS(t) =

−i
2 (ωa + ∆ωa)[σz, ρS(t)] + γD[σ−]ρS(t). (1)

D[σ−]ρ := σ−ρσ+ − 1
2 (σ+σ−ρ+ ρσ+σ−)
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Solving the Master equation

Solution lives in the Bloch sphere
ρS(t) = 1

2 [I2 + x(t)σx + y(t)σy + z(t)σz], Tr{ρ2
S(t)} ≤ 1 therefore

x2(t) + y2(t) + z2(t) ≤ 1.

15 49



∂
∂tz(t) = Tr{σz ∂∂tρS(t)}
∂
∂ty(t) = Tr{σy ∂∂tρS(t)}
∂
∂tx(t) = Tr{σx ∂∂tρS(t)}

Using the Lindblad Master equation to substitute for ∂
∂tρS(t)

these equations become
∂
∂tz(t) = −γ(z(t) + 1)
∂
∂ty(t) = (∆ωa)x(t)− γ

2 y(t)
∂
∂tx(t) = −(∆ωa)y(t)− γ

2 x(t)
with solutions

z(t) = 2e−γt − 1
y(t) = −e−

γt
2 sin((ωa + ∆ωa)t)

x(t) = e−
γt
2 sin((ωa + ∆ωa)t).
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Continued

ρS(t)→

[
e−γt e−

γt
2 sin((ωa + ∆a)t) (1+i)

2
e−

γt
2 sin((ωa + ∆a)t) (1−i)

2 1− e−γt

]
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General master equation for finite dimensional
Hilbert space HS

∂
∂tρS(t) =

− i
~ [H′S, ρS(t)] +

∑N2

ij αij(t){FiρS(t)F†j −
1
2F
†
j FiρS(t)− 1

2ρS(t)F†j Fi}
:= L ρS(t)

The operators Fi are a set of N2 linear operators

forming an orthonormal basis for the space B(HS)

Connecting back to dynamical maps
∂
∂tρS(t) = ∂

∂tνtρS(0) = ∂
∂te

L tρS(0) = L νtρS(0) = L ρS(t)

Quantum dynamical semigroup
L is the generator of the dynamical semigroup {νt = eL t|t ≥ 0}.
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Collisional decoherence

Collisional decoherence, recoilless case.

|x〉|E〉 t−→ |x〉|Ex〉 = |x〉Sx|E〉.

Sx is the so called S-matrix, a unitary operator. S-matrix simply
maps free particle in-states to free particle out-states and
excludes information about the interaction.
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Collisional Decoherence

Evolution of some state φ(x) ∈ L2(R), |E〉 ∈HE.

{
∫
dxφ(x)|x〉}|E〉 t−→

∫
dxφ(x)|x〉Sx|E〉

Reduced Density matrix
ρS(x, y) = φ(x)φ(y)∗

t−→ ρS(x, y)〈E|S†ySx|E〉.

Scattered photons Long-Wavelength limit
〈E|S†ySx|E〉 ≈ e−Λt(x−y)2
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Collisional Decoherence

ρS(x, x′) t−→ ρS(x, x′)e−Λt(x−x′ )2 .

This implies→ ρS(x, x′ , t) = e−Λt(x−x′ )2
ρS(x, x′ ,0).

The above is a solution to the di�erential equation
∂
∂tρS(x, x′ , t) = −Λ(x − x′)2ρS(x, x′ , t)

In operator form.

i~∂ρS(t)
∂t = −iΛ[x, [x, ρS(t)]]. (Master equation)

i~∂ρS(t)
∂t = [ p

2

2m , ρS(t)]− iΛ[x, [x, ρS(t)]]. (Including intrinsic
dynamics, Master equation).
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Scattering constant Λ and decoherence
timescale τ∆x.

Di�erent values of Λ

Decoherence timescales, τ∆x := 1
Λ(∆x)2
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Collisional Decoherence

Superposition of two localized Gaussians, just
decoherence.

φ(x, t = 0) = N1e−(x−a1)2
+ N2e−(x−a2)2

23 49



Collisional Delocalization

Evolution of a Gaussian initial state, decoherence and
delocalization.

The

probability distribution of our particles position is
P(x, t) := ρS(x, x, t).
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Spin chains

H = − 1
2
∑N

n hnσnz −
1
2
∑N−1

n [Jnxσnxσn+1
x + Jnyσnyσn+1

y + Jnzσnz σn+1
z ]

H ∈ B(C⊗2N)

Let N = 10 and|ψ(0)〉 = |1000000000〉 ∈ C⊗2N
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Spin chains decoherence

H = − 1
2
∑N

n hnσnz −
1
2
∑N−1

n [Jnxσnxσn+1
x + Jnyσnyσn+1

y + Jnzσnz σn+1
z ]

H ∈ B(C⊗2N)

Let N = 10 and|ψ(0)〉 = 1√
2 (|1〉 − |0〉)|000000000〉 ∈ C⊗2N
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Decoherence for spin environments in the large
N limit.

Decoherence terms damping
For large N, the decoherence terms follow an approximate
Gaussian dependence e−Γ2t2 . Where Γ depends on environmental
properties and coupling constants Jni .
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Quantum Brownian Motion

Hamiltonian

HE =
∑

i(
1

2mi
p2
i + 1

2miω
2
i q

2
i ).

HI = x ⊗
∑

i ciqi.
HS = 1

2Mp
2 + 1

2MΩ2x2.

Master equation under Born-Markov approximation
∂
∂tρS(t) = − i

~ [HS + 1
2M∆2x2, ρS(t)]− iγ

~ [x, {p, ρS(t)}]−
D[x[x, ρS(t)]]− f

~ [x, [p, ρS(t)]]

Uncertainty of x
∆X2(t) = ~2D

2m2γ2 t.
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Wigner transform

Wigner transform
W(x,p) := 1

2π~
∫∞
−∞ e

i ipy~ ρ(x + y
2 , x −

y
2 ).
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Quantum Brownian Motion

Monitoring Coherences with Wigner transform
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Decoherence in the lab



An example of decoherence in the lab

Photons states in cavity
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Schematic steps

|Oven〉 R1−→ 1√
2 (|g〉+ |e〉)

1√
2 (|g〉+ |e〉) C−→ 1√

2 (|g〉|αe−iξ〉+ |e〉|αeiξ〉)

1√
2 (|g〉|αe−iξ〉+ |e〉|αeiξ〉) R2−→

1
2 (|αe−iξ〉+ |αeiξ〉)|g〉+ 1

2 (−|αe−iξ〉+ |αeiξ〉)|e〉.
1
2 (|αe−iξ〉+ |αeiξ〉)|g〉+ 1

2 (−|αe−iξ〉+ |αeiξ〉)|e〉 Detection−−−−−→
|±〉 = 1√

2 (|αeiξ〉 ± |αe−iξ〉)
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continued

Photon field
State of photonic field left behind in cavity.
|±〉 = 1√

2 (|αeiξ〉 ± |αe−iξ〉) If the atom is detected to be in the

state |g〉 the field is in the field |+〉, if the atom is detected in the
state |e〉 the field is in the state |−〉.

Mesoscopic distinguishability.
To measure the degree to which components |αeiξ〉 and |αe−iξ〉
represent mesoscopically or macroscopically distinguishable
states- we consider |〈αeiξ|αe−iξ〉|2 = e−4|α|2 sin2 ξ. For mean
number of photons |α|2 ≈ 10 and ξ = 0.31

|〈eiξ|αe−iξ〉|2 < 3x10−5.
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Decoherence

State|±〉 = 1√
2 (|αeiξ〉 ± |αe−iξ〉) are superpositions in the

observable basis.

Decoherence is expected.

To measure the time dependence of decoherence a second
rubidium atom is sent through at varying wait time.
It can be shown that under zero decoherence Pee = 1,
probability of first and second atom being detected in the
excited state. On the other hand, under full decoherence
Peg = 1, the probability of finding the second atom in the
ground state is 1.
A useful measuring tool of decoherence.

η(τ) = Pee(τ)− Peg(τ).
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Two-Atom Correlation Signal.

Two-Atom Correlation Signal. η(τ) := Pee(τ)− Peg(τ).

Decoherence time scale Td = Tr
2|α|2 sin2 ξ

. Tr damping time of cavity.
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Decoherence free subspaces



From earlier

Total system has some Hilbert space HS ⊗HE

|ψS〉 ⊗ |ψE〉 := |ψSE〉 ∈HS ⊗HE := Htot.

Dynamics provided by Schrödinger’s equation.
i~∂t|ψSE(t)〉 = H|ψSE(t)〉 where H = HS + HE + HI, a Hermitian
operator in B(HSE).

|ψSE(t)〉 = e−
it
~H. Just like before.
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Decoherence in measurement limit

Let HI =
∑

i Si ⊗ Ei.

Time evolution of product state
ρSE(0) = {

∑
1,m cmc∗m|sl〉〈sm|} ⊗ |E0〉〈E0|.

ρS(t) =

TrE{e
−it
~

∑
k Sk⊗Ek({

∑
1,m cmc∗m|sl〉〈sm|} ⊗ |E0〉〈E0|)e

it
~
∑

k Sk⊗Ek}

This partial trace in general reduces to some state of the form,

ρS(t) =
∑
l,m

al(t)a∗m(t)|sl〉〈sm|

with al(t)a∗m(t)→ 0 as t→∞ forl 6= m.
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Decoherence Free Subspaces.

From what space HC ⊂HA may we construct superpositions∑
l cl|sl〉 that are immune to decoherence?

i.e.

TrE{e
−it
~

∑
k Sk⊗Ek([

∑
l,m

clc∗m|sl〉〈sm|]⊗ |E0〉〈E0|)e
it
~
∑

k Sk⊗Ek} =

=
∑
l,m

clc∗m|sl〉〈sm|

Need{φi}i ONB, with the exotic property of forming a degenerate

eigen space for all Sk.

|ψSE(t)〉 = e
−it
~

∑
k Sk⊗Ek

∑
l

cl|sl〉 ⊗ |E0〉 =

=
∑
l

cle
−it
~

∑
k λkIA⊗Ek |sl〉 ⊗ |E0〉 =

∑
l

cl|sl〉 ⊗ [e
−it
~

∑
k λkEk |E0〉]
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Partial Trace

Let us now partial trace the corresponding density matrix.

ρS(t) =
∑
l,m

clc∗m|sl〉〈sm|TrE[e
−it
~

∑
k λkEk |E0〉〈E0|e

it
~
∑

k λkEk ]

The trace term is just one since density matricese have trace one

under unitary evolution.

ρS(t) =
∑
l,m

clc∗m

.
Decoherence free!!
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Example, symmetric dephasing

Consider a system of N qubits coupled to its environment in the
follwoing way.

|0〉j → |0〉j
|1〉j → eiφ|1〉j.

j indexes over all qubits.

Let the initial state be

|ψ〉0 =
N⊗
j=1

(aj|0〉j + bj|1〉j).

The dephasing process evolves our system into the following

state.

|ψ〉φ =
N⊗
j=1

(aj|0〉j + bjeiφ|1〉j)

with a probability pφ
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Example continued

The ensemble {|ψ〉φ,pφ} can be expressed equivalently as a
mixed state.

ρ =

∫
pφ|ψ〉φ〈ψ|dφ

|ψ〉φ〈ψ| →
N⊗
j=1

[
|aj|2 ajb∗j e

−iφ

a∗j bje
iφ |b|2

]
.

For a Gaussian distribution pφ = (4πα− 1
2 )e

−φ2
4α we have

ρ→
N⊗
i=1

[
|aj|2 ajb∗j e

−α

a∗j bje
−α |b|2

]
.

There is indeed decoherence present, lets look for some DFS.
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Example continued

For starters lets consider the case N = 2. The dephasing for each
of the constituents of the corresponding Hilbert space C2 ⊗ C2 is
summarized by the following.
|00〉 → |00〉
|01〉 → eiφ|01〉
|10〉 → eiφ|10〉
|11〉 → e2iφ|11〉.

Span{|01〉, |10〉}?

check...

|ψ〉 = a|01〉+ b|10〉 → aeiφ|01〉+ beiφ|10〉 = eiφ|ψ〉

It works!!
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Example continued

For N = 3 the largest DFS is Span{|001〉, |010〉, |100〉} or

Span{|011〉, |101〉, |110〉}

In general max[dim(DFS)] =
( N
F(N2 )

)
A

textbook application of stirling’s formula yields the following.

|max[Dim(DFS)]− 2N|
2N → 1.

The dimension of the optimal DFS becomes relatively close to
the dimension of the system for large N.
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Future work

Study robustness of DFS under perturbations.
Find a way to simulate large spin environments.
Decoherence theory in infinite dimensional Hilbert spaces
and extending SBS theory to such systems.
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Thanks

Thank you for your time.
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