Decoherence

Alberto Acevedo

Applied Mathematics-The University of Arizona Graduate College

5/8/2020

OVERVIEW.

OVERVIEW.

OVERVIEW.

■ Closed systems. The Ammonia molecule.

OVERVIEW.

■ Closed systems. The Ammonia molecule.
■ Open Quantum Systems.

OVERVIEW.

■ Closed systems. The Ammonia molecule.
■ Open Quantum Systems.
■ Decoherence Models.

OVERVIEW.

■ Closed systems. The Ammonia molecule.
■ Open Quantum Systems.
■ Decoherence Models.
■ Photons in a cavity, an experimental study of decoherence.

OVERVIEW.

■ Closed systems. The Ammonia molecule.
■ Open Quantum Systems.
■ Decoherence Models.
■ Photons in a cavity, an experimental study of decoherence.
■ Decohere free subspaces.

The Ammonia Molecule, Example of Closed Quantum Systems.

The Ammonia Molecule, an example of a closed QUANTUM SYSTEM.

Hamiltonian

$$
H \rightarrow\left(\begin{array}{cc}
E_{0} & -\epsilon \\
-\epsilon & E_{0}
\end{array}\right)=\left(\begin{array}{ll}
\langle 1| H|1\rangle & \langle 1| H|2\rangle \\
\langle 2| H|1\rangle & \langle 2| H|2\rangle
\end{array}\right)
$$

The Ammonia Molecule, an example of a closed QUANTUM SYSTEM.

Hamiltonian

$H \rightarrow\left(\begin{array}{cc}E_{0} & -\epsilon \\ -\epsilon & E_{0}\end{array}\right)=\left(\begin{array}{ll}\langle 1| H|1\rangle & \langle 1| H|2\rangle \\ \langle 2| H|1\rangle & \langle 2| H|2\rangle\end{array}\right)$
Let us solve SE for $|\psi(0)\rangle=|1\rangle$

- $i \hbar \partial_{t}|\psi(t)\rangle=H|\psi(t)\rangle$
- $|\psi(t)\rangle=U(t)|\psi(0)\rangle$
- $U(t)=e^{\frac{-i H t}{\hbar}}$

AmMonia Molecule continued

AMMONIA MOLECULE CONTINUED

Solution

$|\psi(t)\rangle=e^{\frac{-i E_{0} t}{\hbar}}\left(\cos \left(\frac{\epsilon t}{\hbar}\right)|1\rangle+i \sin \left(\frac{\epsilon t}{\hbar}\right)|2\rangle\right)$, superposition principle at work.

Ammonia Molecule continued

Solution

$|\psi(t)\rangle=e^{\frac{-i E_{0} t}{\hbar}}\left(\cos \left(\frac{\epsilon t}{\hbar}\right)|1\rangle+i \sin \left(\frac{\epsilon t}{\hbar}\right)|2\rangle\right)$, superposition principle at work.

State Matrix

$$
\rho(t)=|\psi(t)\rangle\langle\psi(t)| \rightarrow\left(\begin{array}{cc}
\cos ^{2}\left(\frac{\epsilon t}{\hbar}\right) & -i \cos \left(\frac{\epsilon t}{\hbar}\right) \sin \left(\frac{\epsilon t}{\hbar}\right) \\
i \sin \left(\frac{\epsilon \epsilon}{\hbar}\right) \cos \left(\frac{\epsilon t}{\hbar}\right) & \sin ^{2}\left(\frac{\epsilon t}{\hbar}\right)
\end{array}\right)
$$

AmMonia Molecule continued

Solution

$|\psi(t)\rangle=e^{\frac{-i E_{0} t}{\hbar}}\left(\cos \left(\frac{\epsilon t}{\hbar}\right)|1\rangle+i \sin \left(\frac{\epsilon t}{\hbar}\right)|2\rangle\right)$, superposition principle at work.

State Matrix
$\rho(t)=|\psi(t)\rangle\langle\psi(t)| \rightarrow\left(\begin{array}{cc}\cos ^{2}\left(\frac{\epsilon t}{\hbar}\right) & -i \cos \left(\frac{\epsilon t}{\hbar}\right) \sin \left(\frac{\epsilon t}{\hbar}\right) \\ i \sin \left(\frac{\epsilon t}{\hbar}\right) \cos \left(\frac{\epsilon t}{\hbar}\right) & \sin ^{2}\left(\frac{\epsilon t}{\hbar}\right)\end{array}\right)$
Time evolution of $\operatorname{Tr}\left[\rho(t) \sigma_{\mathrm{z}}\right]$

COHERENCES

COHERENCES

Coherences

$\rho_{i j}(t), i \neq j$, are quantum coherences. Their presence is in general a byproduct of the superposition principle.

COHERENCES

Coherences

$\rho_{i j}(t), i \neq j$, are quantum coherences. Their presence is in general a byproduct of the superposition principle.

Coherences in closed systems

For the Ammonia molecule, $\left|\rho_{12}(t)\right|=\rho_{21}(t)=\cos \left(\frac{\epsilon t}{\hbar}\right) \sin \left(\frac{\epsilon t}{\hbar}\right)$. Note the periodic behavior. Closed systems have periodic coherences.

COHERENCES

Coherences

$\rho_{i j}(t), i \neq j$, are quantum coherences. Their presence is in general a byproduct of the superposition principle.

Coherences in closed systems

For the Ammonia molecule, $\left|\rho_{12}(t)\right|=\rho_{21}(t)=\cos \left(\frac{\epsilon t}{\hbar}\right) \sin \left(\frac{\epsilon t}{\hbar}\right)$. Note the periodic behavior. Closed systems have periodic coherences.

Quantum computation

Quantum coherence is a vital cornerstone to the theory of quantum computation and quantum information. Quantum information is stored within quantum states and the superpostion principle is exploited in order to boost computational speed.

OPEN QUANTUM SYSTEMS

OPEN QUANTUM SYSTEMS

OPEN QUANTUM SYSTEMS

Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$

OPEN QUANTUM SYSTEMS

■ Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$
$\square\left|\psi_{S}\right\rangle \otimes\left|\psi_{E}\right\rangle:=\left|\psi_{S E}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}:=\mathscr{H}_{\text {tot }}$.

OPEN QUANTUM SYSTEMS

■ Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$

■ $\left|\psi_{S}\right\rangle \otimes\left|\psi_{E}\right\rangle:=\left|\psi_{S E}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}:=\mathscr{H}_{\text {tot }}$.

■ Dynamics provided by Schrödinger's equation. $i \hbar \partial_{t}\left|\psi_{S E}(t)\right\rangle=H\left|\psi_{S E}(t)\right\rangle$ where $H=H_{S}+H_{E}+H_{l}$, a Hermitian operator in $\mathscr{B}\left(\mathscr{H}_{\text {SE }}\right)$.

OPEN QUANTUM SYSTEMS

■ Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$
$\square\left|\psi_{S}\right\rangle \otimes\left|\psi_{E}\right\rangle:=\left|\psi_{S E}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}:=\mathscr{H}_{\text {tot }}$.

■ Dynamics provided by Schrödinger's equation.
$i \hbar \partial_{t}\left|\psi_{S E}(t)\right\rangle=H\left|\psi_{S E}(t)\right\rangle$ where $H=H_{S}+H_{E}+H_{l}$, a Hermitian operator in $\mathscr{B}\left(\mathscr{H}_{\text {SE }}\right)$.

- $\left|\psi_{S E}(t)\right\rangle=e^{-\frac{i t}{\hbar} H}$. Just like before.

We can attain the reduced dynamics by partial tracing over the degrees of freedom pertaining to the environment. i.e.

$$
\rho_{S}(t):=\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right\}
$$

Partial Trace

Definition

$\operatorname{Tr}_{E}\{ \}: T\left(\mathscr{H}_{S} \otimes \mathscr{H}_{E}\right) \rightarrow T\left(\mathscr{H}_{S}\right)$

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right\}:=\sum_{k}\left\langle\phi_{k} \mid \psi_{\text {SE }}(t)\right\rangle\left\langle\psi_{\text {SE }}(t) \mid \phi_{k}\right\rangle,
$$

where $\left\{\left|\phi_{k}\right\rangle\right\}_{k}$ is an ONB for \mathscr{H}_{k}.

Partial Trace

Definition

$\operatorname{Tr}_{E}\{ \}: T\left(\mathscr{H}_{S} \otimes \mathscr{H}_{E}\right) \rightarrow T\left(\mathscr{H}_{S}\right)$

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right\}:=\sum_{k}\left\langle\phi_{k} \mid \psi_{\text {SE }}(t)\right\rangle\left\langle\psi_{\text {SE }}(t) \mid \phi_{k}\right\rangle,
$$

where $\left\{\left|\phi_{k}\right\rangle\right\}_{k}$ is an ONB for \mathscr{H}_{k}.
■ Let use make sure that this map is the correct one.

Partial Trace

Definition

$\operatorname{Tr}_{E}\{ \}: T\left(\mathscr{H}_{S} \otimes \mathscr{H}_{E}\right) \rightarrow T\left(\mathscr{H}_{S}\right)$

$$
\operatorname{Tr}_{E}\left\{\left|\psi_{S E}(t)\right\rangle\left\langle\psi_{S E}(t)\right|\right\}:=\sum_{k}\left\langle\phi_{k} \mid \psi_{\text {SE }}(t)\right\rangle\left\langle\psi_{S E}(t) \mid \phi_{k}\right\rangle,
$$

where $\left\{\left|\phi_{k}\right\rangle\right\}_{k}$ is an ONB for \mathscr{H}_{k}.

- Let use make sure that this map is the correct one.

$$
\begin{aligned}
A_{S} & \rightarrow A_{S} \otimes I_{E}, \\
\left\langle A_{S} \otimes I_{E}\right\rangle & =\operatorname{Tr}\left\{\rho_{S E}\left(A_{S} \otimes I_{E}\right)\right\} .
\end{aligned}
$$

But it can be shown that

$$
\operatorname{Tr}\left\{\rho_{S E}\left(A_{S} \otimes I_{E}\right)\right\}=\operatorname{Tr}\left\{\rho_{S} A_{S}\right\}!!!!!.
$$

Product state

Product state as an initial state

Assume our initial state to be in a product state. $\rho_{S E}(\mathrm{O})=\rho_{S}(\mathrm{O}) \otimes \rho_{E}(\mathrm{O}) \in \mathscr{D}\left(\mathscr{H}_{S E}\right):=$ Space of trace class operators over $\mathscr{H}_{S E}$ with trace one.

Product state

Product state as an initial state

Assume our initial state to be in a product state. $\rho_{S E}(\mathrm{O})=\rho_{S}(\mathrm{O}) \otimes \rho_{E}(\mathrm{O}) \in \mathscr{D}\left(\mathscr{H}_{S E}\right):=$ Space of trace class operators over $\mathscr{H}_{S E}$ with trace one.

Diagonalizing the environmental component $\rho_{E}(\mathrm{O})=\sum_{i} p_{i}\left|E_{i}\right\rangle\left\langle E_{i}\right|$.

Product state

Product state as an initial state

Assume our initial state to be in a product state. $\rho_{S E}(\mathrm{O})=\rho_{S}(\mathrm{O}) \otimes \rho_{E}(\mathrm{O}) \in \mathscr{D}\left(\mathscr{H}_{S E}\right):=$ Space of trace class operators over $\mathscr{H}_{\text {SE }}$ with trace one.

Diagonalizing the environmental component

 $\rho_{E}(\mathrm{O})=\sum_{i} p_{i}\left|E_{i}\right\rangle\left\langle E_{i}\right|$.Non-Unitary Time Evolution
$\rho_{S}(t)=\operatorname{Tr}_{E}\left\{U(t)\left(\rho_{S E}(\mathrm{o})\right) U^{\dagger}(t)\right\}=\sum_{i j} p_{i}\left\langle E_{j}\right| U(t)\left|E_{i}\right\rangle \rho_{S}(\mathrm{o})\left\langle E_{i}\right| U^{\dagger}(t)\left|E_{j}\right\rangle$.
We short hand this evolution as $\nu_{t} \rho_{\mathrm{S}}(\mathrm{O})=\rho_{\mathrm{S}}(\mathrm{t})$. (Dynamical map).

KRAUSS OPERATORS AND COMPLETELY POSITIVE MAPS.

Krauss operators

The operators $\left\langle E_{j}\right| U(t)\left|E_{i}\right\rangle \in \mathscr{B}\left(\mathscr{H}_{S}\right)$ are referred to as krauss operators. These operators characterize the dynamical map seen in the previous slide.

KRAUSS OPERATORS AND COMPLETELY POSITIVE MAPS.

Krauss operators

The operators $\left\langle E_{j}\right| U(t)\left|E_{i}\right\rangle \in \mathscr{B}\left(\mathscr{H}_{S}\right)$ are referred to as krauss operators. These operators characterize the dynamical map seen in the previous slide.

Definition

A map $\nu_{t}:=\mathscr{D}\left(\mathscr{H}_{S}\right) \rightarrow \mathscr{D}\left(\mathscr{H}_{S}\right)$ is said to be a dynamical map if it is a completely positive map, has convex linearity and is trace preserving.

KRAUSS OPERATORS AND COMPLETELY POSITIVE MAPS.

Krauss operators

The operators $\left\langle E_{j}\right| U(t)\left|E_{i}\right\rangle \in \mathscr{B}\left(\mathscr{H}_{S}\right)$ are referred to as krauss operators. These operators characterize the dynamical map seen in the previous slide.

Definition

A map $\nu_{t}:=\mathscr{D}\left(\mathscr{H}_{S}\right) \rightarrow \mathscr{D}\left(\mathscr{H}_{S}\right)$ is said to be a dynamical map if it is a completely positive map, has convex linearity and is trace preserving.

Complete positivity

$\nu_{t} \otimes I_{n}$ required to be positive for all n. Without the latter we could end up mapping from positive operators to operators which are not (Negative probabilities).

Continued

Convex Linearity, evolving mixed states.

$\nu_{t}\left\{\lambda \rho_{S_{1}}(\mathrm{o})+(1-\lambda) \rho_{S_{2}}(\mathrm{o})\right\}=\lambda \nu_{t} \rho_{\mathrm{S}_{1}}(\mathrm{o})+(1-\lambda) \nu_{t} \rho_{\mathrm{S}_{2}}(\mathrm{o})$.

Continued

Convex Linearity, evolving mixed states.

$$
\nu_{t}\left\{\lambda \rho s_{1}(0)+(1-\lambda) \rho s_{2}(0)\right\}=\lambda \nu_{t} \rho s_{1}(0)+(1-\lambda) \nu_{t} \rho s_{2}(0) .
$$

Trace preservation.

$\operatorname{Tr}\left\{\nu_{t} \rho_{s}(0)\right\}=1$.

The unitary evolution and partial trace approach.
$\nu_{t} \rho_{S}(0)=\operatorname{Tr}_{E}\left\{U(t) \rho_{S E}(0) U^{\dagger}\right\}$

TWO WAYS TO FIND EVOLVED REDUCED DYNAMICS.

The unitary evolution and partial trace approach.
$\nu_{t} \rho_{S}(\mathrm{O})=\operatorname{Tr}_{E}\left\{U(t) \rho_{S E}(\mathrm{O}) U^{\dagger}\right\}$

Partial trace of Von Neumann equation approach

$$
\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right] \rightarrow \frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{S E}, \rho_{S E}(t)\right]\right\}
$$

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

■ Von Neumman: $\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right]$.

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

■ Von Neumman: $\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right]$.
■ Interaction picture: $\tau(\ldots):=e^{-\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}(\ldots) e^{\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}$.

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

■ Von Neumman: $\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right]$.
■ Interaction picture: $\tau(\ldots):=e^{-\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}(\ldots) e^{\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}$.
■ Von Neumann in interaction picture (IP):

$$
\frac{\partial}{\partial t} \tau\left(\rho_{S E}\right)(t)=-\frac{i}{\hbar}\left[\tau\left(H_{I}\right), \tau\left(\rho_{S E}\right)(t)\right]
$$

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

■ Von Neumman: $\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right]$.
■ Interaction picture: $\tau(\ldots):=e^{-\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}(\ldots) e^{\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}$.
■ Von Neumann in interaction picture (IP):
$\frac{\partial}{\partial t} \tau\left(\rho_{S E}\right)(t)=-\frac{i}{\hbar}\left[\tau\left(H_{I}\right), \tau\left(\rho_{S E}\right)(t)\right]$

- Reduced Von Neumann in IP, dropping τ for readability: $\frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{l}(t), \rho_{S E}(t)\right]\right\}$

Reduced Von Neumann equation. Path to BornMARKOV MASTER EQUATION.

■ Von Neumman: $\frac{\partial}{\partial t} \rho_{S E}(t)=-\frac{i}{\hbar}\left[H_{S E}, \rho_{S E}(t)\right]$.
■ Interaction picture: $\tau(\ldots):=e^{-\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}(\ldots) e^{\frac{i}{\hbar}\left(H_{S}+H_{E}\right)}$.
■ Von Neumann in interaction picture (IP):

$$
\frac{\partial}{\partial t} \tau\left(\rho_{S E}\right)(t)=-\frac{i}{\hbar}\left[\tau\left(H_{I}\right), \tau\left(\rho_{S E}\right)(t)\right]
$$

■ Reduced Von Neumann in IP, dropping τ for readability:

$$
\frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{l}(t), \rho_{S E}(t)\right]\right\}
$$

■ Equivalently.

$$
\begin{gathered}
\frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{l}, \rho_{S E}(\mathrm{O})\right]\right\}+ \\
+\frac{i^{2}}{\hbar^{2}} \int_{0}^{t} d t_{1} \operatorname{Tr}_{E}\left\{\left[H_{l}(t),\left[H_{l}\left(t_{1}\right), \rho_{S E}\left(t_{1}\right)\right]\right]\right\}
\end{gathered}
$$

CONTINUED

CONTINUED

■ We will work with product state initial conditions. $\rho_{S E}(\mathbf{O})=\rho_{S}(\mathbf{O}) \otimes \rho_{E}(\mathbf{O})$. i.e. There are no correlations between the system and the environment. Good approximation for weakly interacting systems.

CONTINUED

■ We will work with product state initial conditions. $\rho_{S E}(\mathrm{O})=\rho_{S}(\mathrm{O}) \otimes \rho_{E}(\mathrm{O})$. i.e. There are no correlations between the system and the environment. Good approximation for weakly interacting systems.

Born approximation

Assuming that the system only weakly affects the bath it is permissible to replace $\rho_{S}\left(t_{1}\right) \otimes \rho_{E}\left(t_{1}\right)$ by $\rho_{S}\left(t_{1}\right) \otimes \rho_{E}(0)$.

CONTINUED

■ We will work with product state initial conditions. $\rho_{S E}(\mathbf{O})=\rho_{S}(\mathbf{O}) \otimes \rho_{E}(\mathbf{O})$. i.e. There are no correlations between the system and the environment. Good approximation for weakly interacting systems.

Born approximation

Assuming that the system only weakly affects the bath it is permissible to replace $\rho_{S}\left(t_{1}\right) \otimes \rho_{E}\left(t_{1}\right)$ by $\rho_{S}\left(t_{1}\right) \otimes \rho_{E}(0)$.

The Markov approximation

In order for the reduced Von Neumann equation to be Markovian the integrand must be smooth and sharply peaked in the vicinity of $t \approx t_{1}$. If this holds than we may trade in $\rho_{S}\left(t_{1}\right) \otimes \rho_{E}(0)$ for $\rho_{S}(t) \otimes \rho_{E}(0)$.

Continued

Born-Markov master equation

$$
\begin{gathered}
\frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar} \operatorname{Tr}_{E}\left\{\left[H_{l}, \rho_{S}(0) \otimes \rho_{E}(0)\right]\right\}+ \\
+\frac{i^{2}}{\hbar^{2}} \int_{-\infty}^{t} d t_{1} \operatorname{Tr}_{E}\left\{\left[H_{l}(t),\left[H_{l}\left(t_{1}\right), \rho_{S}(t) \otimes \rho_{E}(0)\right]\right]\right\}
\end{gathered}
$$

DECOHERENCE MODELS

Two-LEVEL SYSTEM IN A BATH

TWO-LEVEL SYSTEM IN A BATH

■ Let E be a large, with respect to the system, bosonic bath and S be a two-level system. With a dipole interaction term the dynamics is generated by the Hamiltonian.

TWO-LEVEL SYSTEM IN A BATH

■ Let E be a large, with respect to the system, bosonic bath and S be a two-level system. With a dipole interaction term the dynamics is generated by the Hamiltonian.

■ $H_{S E}=\frac{\hbar \omega_{a}}{2} \sigma_{z}+\hbar \sum_{k} \omega_{k} b_{k}^{\dagger} b_{k}+\hbar \sum_{k}\left(g_{k} b_{k}+g_{k} b_{k}^{\dagger}\right)\left(\sigma_{+}+\sigma_{-}\right)$
Assuming that the two level system is in the excited state at $t=0$ we can use the Born-Markov approximation to arrive at the following equation.

TWO-LEVEL SYSTEM IN A BATH

■ Let E be a large, with respect to the system, bosonic bath and S be a two-level system. With a dipole interaction term the dynamics is generated by the Hamiltonian.

■ $H_{S E}=\frac{\hbar \omega_{a}}{2} \sigma_{z}+\hbar \sum_{k} \omega_{k} b_{k}^{\dagger} b_{k}+\hbar \sum_{k}\left(g_{k} b_{k}+g_{k} b_{k}^{\dagger}\right)\left(\sigma_{+}+\sigma_{-}\right)$
Assuming that the two level system is in the excited state at $t=0$ we can use the Born-Markov approximation to arrive at the following equation.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{S}(t)=\frac{-i}{2}\left(\omega_{a}+\Delta \omega_{a}\right)\left[\sigma_{z}, \rho_{S}(t)\right]+\gamma D\left[\sigma_{-}\right] \rho_{S}(t) \tag{1}
\end{equation*}
$$

TWO-LEVEL SYSTEM IN A BATH

■ Let E be a large, with respect to the system, bosonic bath and S be a two-level system. With a dipole interaction term the dynamics is generated by the Hamiltonian.

■ $H_{S E}=\frac{\hbar \omega_{a}}{2} \sigma_{z}+\hbar \sum_{k} \omega_{k} b_{k}^{\dagger} b_{k}+\hbar \sum_{k}\left(g_{k} b_{k}+g_{k} b_{k}^{\dagger}\right)\left(\sigma_{+}+\sigma_{-}\right)$
Assuming that the two level system is in the excited state at $t=0$ we can use the Born-Markov approximation to arrive at the following equation.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{S}(t)=\frac{-i}{2}\left(\omega_{a}+\Delta \omega_{a}\right)\left[\sigma_{z}, \rho_{S}(t)\right]+\gamma D\left[\sigma_{-}\right] \rho_{S}(t) \tag{1}
\end{equation*}
$$

■ $D\left[\sigma_{-}\right] \rho:=\sigma_{-} \rho \sigma_{+}-\frac{1}{2}\left(\sigma_{+} \sigma_{-} \rho+\rho \sigma_{+} \sigma_{-}\right)$

Solving the Master equation

Solution lives in the Bloch sphere
$\rho_{S}(t)=\frac{1}{2}\left[I_{2}+x(t) \sigma_{x}+y(t) \sigma_{y}+z(t) \sigma_{z}\right], \operatorname{Tr}\left\{\rho_{S}^{2}(t)\right\} \leq 1$ therefore $x^{2}(t)+y^{2}(t)+z^{2}(t) \leq 1$.

- $\frac{\partial}{\partial t} z(t)=\operatorname{Tr}\left\{\sigma_{z} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$
- $\frac{\partial}{\partial t} y(t)=\operatorname{Tr}\left\{\sigma_{y} \frac{\partial}{\partial t} \rho_{s}(t)\right\}$
- $\frac{\partial}{\partial t} x(t)=\operatorname{Tr}\left\{\sigma_{x} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$

$$
\begin{aligned}
\square \frac{\partial}{\partial t} z(t) & =\operatorname{Tr}\left\{\sigma_{z} \frac{\partial}{\partial t} \rho_{S}(t)\right\} \\
\square \frac{\partial}{\partial t} y(t) & =\operatorname{Tr}\left\{\sigma_{y} \frac{\partial}{\partial t} \rho_{S}(t)\right\} \\
\square \frac{\partial}{\partial t} x(t) & =\operatorname{Tr}\left\{\sigma_{x} \frac{\partial}{\partial t} \rho_{S}(t)\right\}
\end{aligned}
$$

Using the Lindblad Master equation to substitute for $\frac{\partial}{\partial t} \rho_{S}(t)$ these equations become

- $\frac{\partial}{\partial t} z(t)=-\gamma(z(t)+1)$

■ $\frac{\partial}{\partial t} y(t)=\left(\Delta \omega_{a}\right) x(t)-\frac{\gamma}{2} y(t)$

- $\frac{\partial}{\partial t} x(t)=-\left(\Delta \omega_{a}\right) y(t)-\frac{\gamma}{2} x(t)$

■ $\frac{\partial}{\partial t} z(t)=\operatorname{Tr}\left\{\sigma_{z} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$

- $\frac{\partial}{\partial t} y(t)=\operatorname{Tr}\left\{\sigma_{y} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$
- $\frac{\partial}{\partial t} x(t)=\operatorname{Tr}\left\{\sigma_{x} \frac{\partial}{\partial t} \rho_{S}(t)\right\}$

Using the Lindblad Master equation to substitute for $\frac{\partial}{\partial t} \rho_{S}(t)$ these equations become

- $\frac{\partial}{\partial \mathrm{t}} \mathrm{z}(\mathrm{t})=-\gamma(\mathrm{z}(\mathrm{t})+1)$

■ $\frac{\partial}{\partial t} y(t)=\left(\Delta \omega_{a}\right) x(t)-\frac{\gamma}{2} y(t)$

- $\frac{\partial}{\partial t} x(t)=-\left(\Delta \omega_{a}\right) y(t)-\frac{\gamma}{2} x(t)$
with solutions
■ $z(t)=2 e^{-\gamma t}-1$
- $y(t)=-e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta \omega_{a}\right) t\right)$

■ $x(t)=e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta \omega_{a}\right) t\right)$.

CONTINUED

$$
\rho_{S}(t) \rightarrow\left[\begin{array}{cc}
e^{-\gamma t} & e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta_{a}\right) t\right) \frac{(1+i)}{2} \\
e^{-\frac{\gamma t}{2}} \sin \left(\left(\omega_{a}+\Delta_{a}\right) t\right) \frac{(1-i)}{2} & 1-e^{-\gamma t}
\end{array}\right]
$$

General master equation for finite dimensional Hilbert SPACE \mathscr{H}_{S}

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{S}(t)= \\
& -\frac{i}{\hbar}\left[H_{S}^{\prime}, \rho_{S}(t)\right]+\sum_{i j}^{N^{2}} \alpha_{i j}(t)\left\{F_{i} \rho_{S}(t) F_{j}^{\dagger}-\frac{1}{2} \vdash_{j}^{\dagger} F_{i} \rho_{S}(t)-\frac{1}{2} \rho_{S}(t) F_{j}^{\dagger} F_{i}\right\} \\
& :=\mathscr{L} \rho_{S}(t)
\end{aligned}
$$

GENERAL MASTER EQUATION FOR FINITE DIMENSIONAL

 Hilbert SPACE $\mathscr{H}_{S}$$\frac{\partial}{\partial t} \rho_{s}(t)=$
$-\frac{i}{\hbar}\left[H_{S}^{\prime}, \rho_{S}(t)\right]+\sum_{i j}^{N^{2}} \alpha_{i j}(t)\left\{F_{i} \rho_{S}(t) F_{j}^{\dagger}-\frac{1}{2} F_{j}^{\dagger} F_{i} \rho_{S}(t)-\frac{1}{2} \rho_{S}(t) F_{j}^{\dagger} F_{i}\right\}$
$:=\mathscr{L} \rho_{S}(t)$ The operators F_{i} are a set of N^{2} linear operators
forming an orthonormal basis for the space $\mathscr{B}\left(\mathscr{H}_{S}\right)$

General master equation for finite dimensional

 Hilbert SPACE $\mathscr{H}_{S}$$\frac{\partial}{\partial t} \rho_{s}(t)=$
$-\frac{i}{\hbar}\left[H_{S}^{\prime}, \rho_{S}(t)\right]+\sum_{i j}^{N^{2}} \alpha_{i j}(t)\left\{F_{i} \rho_{S}(t) F_{j}^{\dagger}-\frac{1}{2} F_{j}^{\dagger} F_{i} \rho_{S}(t)-\frac{1}{2} \rho_{S}(t) F_{j}^{\dagger} F_{i}\right\}$
$:=\mathscr{L} \rho_{S}(t)$ The operators F_{i} are a set of N^{2} linear operators
forming an orthonormal basis for the space $\mathscr{B}\left(\mathscr{H}_{S}\right)$
Connecting back to dynamical maps

$$
\frac{\partial}{\partial t} \rho_{S}(t)=\frac{\partial}{\partial t} \nu_{t} \rho_{S}(\mathrm{O})=\frac{\partial}{\partial t} e^{\mathscr{L} t} \rho_{S}(\mathrm{O})=\mathscr{L} \nu_{t} \rho_{S}(\mathrm{O})=\mathscr{L} \rho_{S}(t)
$$

GENERAL MASTER EQUATION FOR FINITE DIMENSIONAL Hilbert SPACE \mathscr{H}_{S}

$\frac{\partial}{\partial t} \rho_{S}(t)=$
$-\frac{i}{\hbar}\left[H_{S}^{\prime}, \rho_{S}(t)\right]+\sum_{i j}^{N^{2}} \alpha_{i j}(t)\left\{F_{i} \rho_{S}(t) F_{j}^{\dagger}-\frac{1}{2} F_{j}^{\dagger} F_{i} \rho_{S}(t)-\frac{1}{2} \rho_{S}(t) F_{j}^{\dagger} F_{i}\right\}$
$:=\mathscr{L} \rho_{S}(t)$ The operators F_{i} are a set of N^{2} linear operators
forming an orthonormal basis for the space $\mathscr{B}\left(\mathscr{H}_{s}\right)$
Connecting back to dynamical maps

$$
\frac{\partial}{\partial t} \rho_{S}(t)=\frac{\partial}{\partial t} \nu_{t} \rho_{S}(0)=\frac{\partial}{\partial t} e^{\mathscr{L} t} \rho_{S}(0)=\mathscr{L} \nu_{t} \rho_{S}(0)=\mathscr{L} \rho_{S}(t)
$$

Quantum dynamical semigroup
\mathscr{L} is the generator of the dynamical semigroup $\left\{\nu_{t}=e^{\mathscr{L} t} \mid t \geq 0\right\}$.

COLLISIONAL DECOHERENCE

Collisional decoherence, recoilless case.

S_{x} is the so called S-matrix, a unitary operator. S-matrix simply maps free particle in-states to free particle out-states and excludes information about the interaction.

Collisional Decoherence

Evolution of some state $\phi(x) \in L^{2}(\mathbb{R}),|E\rangle \in \mathscr{H}_{E}$.
$\left\{\int d x \phi(x)|x\rangle\right\}|E\rangle \xrightarrow{t} \int d x \phi(x)|x\rangle S_{x}|E\rangle$

Collisional Decoherence

Evolution of some state $\phi(x) \in L^{2}(\mathbb{R}),|E\rangle \in \mathscr{H}_{E}$.
$\left\{\int d x \phi(x)|x\rangle\right\}|E\rangle \xrightarrow{t} \int d x \phi(x)|x\rangle S_{x}|E\rangle$

Reduced Density matrix

$$
\rho_{S}(x, y)=\phi(x) \phi(y)^{*} \xrightarrow{t} \rho_{s}(x, y)\langle E| S_{y}^{\dagger} S_{x}|E\rangle .
$$

COLLISIONAL DECOHERENCE

Evolution of some state $\phi(x) \in L^{2}(\mathbb{R}),|E\rangle \in \mathscr{H}_{E}$.
$\left\{\int d x \phi(x)|x\rangle\right\}|E\rangle \xrightarrow{t} \int d x \phi(x)|x\rangle S_{x}|E\rangle$

Reduced Density matrix
$\rho_{S}(x, y)=\phi(x) \phi(y)^{*} \xrightarrow{t} \rho_{S}(x, y)\langle E| S_{y}^{\dagger} S_{x}|E\rangle$.

Scattered photons Long-Wavelength limit
$\langle E| S_{y}^{\dagger} S_{x}|E\rangle \approx e^{-\Lambda t(x-y)^{2}}$

COLLISIONAL DECOHERENCE

- $\rho_{S}\left(x, x^{\prime}\right) \xrightarrow{t} \rho_{S}\left(x, x^{\prime}\right) e^{-\Lambda t\left(x-x^{\prime}\right)^{2}}$.

This implies $\rightarrow \rho_{S}\left(x, x^{\prime}, t\right)=e^{-\Lambda t\left(x-x^{\prime}\right)^{2}} \rho_{S}\left(x, x^{\prime}, 0\right)$.

COLLISIONAL DECOHERENCE

- $\rho_{S}\left(x, x^{\prime}\right) \xrightarrow{t} \rho_{S}\left(x, x^{\prime}\right) e^{-\Lambda t\left(x-x^{\prime}\right)^{2}}$.

This implies $\rightarrow \rho_{S}\left(x, x^{\prime}, t\right)=e^{-\Lambda t\left(x-x^{\prime}\right)^{2}} \rho_{S}\left(x, x^{\prime}, 0\right)$.
■ The above is a solution to the differential equation

$$
\frac{\partial}{\partial t} \rho_{S}\left(x, x^{\prime}, t\right)=-\Lambda\left(x-x^{\prime}\right)^{2} \rho_{S}\left(x, x^{\prime}, t\right)
$$

COLLISIONAL DECOHERENCE

- $\rho_{\mathrm{S}}\left(x, x^{\prime}\right) \xrightarrow{t} \rho_{\mathrm{S}}\left(x, x^{\prime}\right) e^{-\Lambda t\left(x-x^{\prime}\right)^{2}}$.

This implies $\rightarrow \rho_{S}\left(x, x^{\prime}, t\right)=e^{-\Lambda t\left(x-x^{\prime}\right)^{2}} \rho_{S}\left(x, x^{\prime}, 0\right)$.
■ The above is a solution to the differential equation

$$
\frac{\partial}{\partial t} \rho_{S}\left(x, x^{\prime}, t\right)=-\Lambda\left(x-x^{\prime}\right)^{2} \rho_{S}\left(x, x^{\prime}, t\right)
$$

■ In operator form.

$$
i \hbar \frac{\partial \rho_{\rho}(t)}{\partial t}=-i \Lambda\left[x,\left[x, \rho_{S}(t)\right]\right] . \text { (Master equation) }
$$

COLLISIONAL DECOHERENCE

- $\rho_{S}\left(x, x^{\prime}\right) \xrightarrow{t} \rho_{S}\left(x, x^{\prime}\right) e^{-\Lambda t\left(x-x^{\prime}\right)^{2}}$.

This implies $\rightarrow \rho_{S}\left(x, x^{\prime}, t\right)=e^{-\Lambda t\left(x-x^{\prime}\right)^{2}} \rho_{S}\left(x, x^{\prime}, 0\right)$.
■ The above is a solution to the differential equation

$$
\frac{\partial}{\partial t} \rho_{S}\left(x, x^{\prime}, t\right)=-\Lambda\left(x-x^{\prime}\right)^{2} \rho_{S}\left(x, x^{\prime}, t\right)
$$

■ In operator form.
$i \hbar \frac{\partial \rho_{\rho}(t)}{\partial t}=-i \Lambda\left[x,\left[x, \rho_{S}(t)\right]\right]$. (Master equation)
■ $i \hbar \frac{\partial \rho_{S}(t)}{\partial t}=\left[\frac{p^{2}}{2 m}, \rho_{S}(t)\right]-i \wedge\left[x,\left[x, \rho_{S}(t)\right]\right]$. (Including intrinsic dynamics, Master equation).

SCATTERING CONSTANT \wedge AND DECOHERENCE

TIMESCALE $\tau_{\Delta x}$.

Different values of \wedge

Environment	Λ for dust grain, $10^{-3} \mathrm{~cm}$	Λ for dust particle, $10^{-5} \mathrm{~cm}$
Cosmic background radiation	10^{6}	10^{-6}
300 k photons	10^{19}	10^{12}
Sunlight on earth	10^{21}	10^{17}
Air molecules	10^{36}	10^{32}
Laboratory vacuum	10^{23}	10^{19}

SCATTERING

Different values of \wedge

Environment	Λ for dust grain, $10^{-3} \mathrm{~cm}$	Λ for dust particle, $10^{-5} \mathrm{~cm}$
Cosmic background radiation	10^{6}	10^{-6}
300 k photons	10^{19}	10^{12}
Sunlight on earth	10^{21}	10^{17}
Air molecules	10^{36}	10^{32}
Laboratory vacuum	10^{23}	10^{19}

Decoherence timescales, $\tau_{\Delta x}:=\frac{1}{\lambda(\Delta x)^{2}}$

Environment	Ifor Dust grain, $10^{-3} \mathrm{~cm}$
Cosmic background radiation	1
Photons at room temperature	10^{-18}
Best laboratory vacuum	10^{-14}
Air at normal pressure	10^{-31}

COLLISIONAL DECOHERENCE

Superposition of two localized Gaussians, just decoherence.

COLLISIONAL DELOCALIZATION

Evolution of a Gaussian initial state, decoherence and delocalization.

The
probability distribution of our particles position is

$$
P(x, t):=\rho_{S}(x, x, t) .
$$

SPIN CHAINS

■ $H=-\frac{1}{2} \sum_{n}^{N} h_{n} \sigma_{z}^{n}-\frac{1}{2} \sum_{n}^{N-1}\left[J_{x}^{n} \sigma_{x}^{n} \sigma_{x}^{n+1}+J_{y}^{n} \sigma_{y}^{n} \sigma_{y}^{n+1}+J_{z}^{n} \sigma_{z}^{n} \sigma_{z}^{n+1}\right]$

- $H \in \mathscr{B}\left(\mathbb{C}^{\otimes 2 N}\right)$

■ Let $N=10$ and $|\psi(0)\rangle=|1000000000\rangle \in \mathbb{C}^{\otimes 2 N}$

SPIN CHAINS DECOHERENCE

■ $H=-\frac{1}{2} \sum_{n}^{N} h_{n} \sigma_{z}^{n}-\frac{1}{2} \sum_{n}^{N-1}\left[J_{x}^{n} \sigma_{x}^{n} \sigma_{x}^{n+1}+J_{y}^{n} \sigma_{y}^{n} \sigma_{y}^{n+1}+J_{z}^{n} \sigma_{z}^{n} \sigma_{z}^{n+1}\right]$

- $H \in \mathscr{B}\left(\mathbb{C}^{\otimes 2 N}\right)$
- Let $N=10$ and $|\psi(0)\rangle=\frac{1}{\sqrt{2}}(|1\rangle-|0\rangle)|000000000\rangle \in \mathbb{C}^{\otimes 2 N}$

Spin chain

Decoherence for spin environments in the Large N LIMIT.

Decoherence terms damping

For large N, the decoherence terms follow an approximate Gaussian dependence $e^{-\Gamma^{2} t^{2}}$. Where Γ depends on environmental properties and coupling constants J_{i}^{n}.

QUANTUM Brownian Motion

Hamiltonian

- $H_{E}=\sum_{i}\left(\frac{1}{2 m_{i}} p_{i}^{2}+\frac{1}{2} m_{i} \omega_{i}^{2} q_{i}^{2}\right)$.
- $H_{l}=x \otimes \sum_{i} c_{i} q_{i}$.
- $H_{S}=\frac{1}{2 M} P^{2}+\frac{1}{2} M \Omega^{2} x^{2}$.

Master equation under Born-Markov approximation

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho_{S}(t)=-\frac{i}{\hbar}\left[H_{S}+\frac{1}{2} M \Delta^{2} x^{2}, \rho_{S}(t)\right]-\frac{i \gamma}{\hbar}\left[x,\left\{p, \rho_{S}(t)\right\}\right]- \\
& D\left[x\left[x, \rho_{S}(t)\right]\right]-\frac{f}{\hbar}\left[x,\left[p, \rho_{S}(t)\right]\right]
\end{aligned}
$$

Uncertainty of x
$\Delta X^{2}(t)=\frac{\hbar^{2} D}{2 m^{2} \gamma^{2}} t$.

WIGNER TRANSFORM

Wigner transform

$$
W(x, p):=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{\frac{i p y}{\hbar}} \rho\left(x+\frac{y}{2}, x-\frac{y}{2}\right) .
$$

QUANTUM BROWNIAN MOTION

Monitoring Coherences with Wigner transform

DECOHERENCE IN THE LAB

AN EXAMPLE OF DECOHERENCE IN THE LAB

Photons states in cavity

SCHEMATIC STEPS

SCHEMATIC STEPS

■ |Oven $\rangle \xrightarrow{R_{1}} \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$

SCHEMATIC STEPS

■ |Oven $\rangle \xrightarrow{R_{1}} \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$
■ $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle) \xrightarrow{C} \frac{1}{\sqrt{2}}\left(|g\rangle\left|\alpha e^{-i \xi}\right\rangle+|e\rangle\left|\alpha e^{i \xi}\right\rangle\right)$

$$
\begin{aligned}
& \text { - }\mid \text { Oven }\rangle \xrightarrow{R_{1}} \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle) \\
& \text { - } \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle) \xrightarrow{c} \frac{1}{\sqrt{2}}\left(|g\rangle\left|\alpha e^{-i \xi}\right\rangle+|e\rangle\left|\alpha e^{i \xi}\right\rangle\right) \\
& \text { - } \frac{1}{\sqrt{2}}\left(|g\rangle\left|\alpha e^{-i \xi}\right\rangle+|e\rangle\left|\alpha e^{i \xi}\right\rangle\right) \xrightarrow{R_{2}} \\
& \frac{1}{2}\left(\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|g\rangle+\frac{1}{2}\left(-\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|e\rangle .
\end{aligned}
$$

SCHEMATIC STEPS

■ |Oven $\rangle \xrightarrow{R_{1}} \frac{1}{\sqrt{2}}(|g\rangle+|e\rangle)$
■ $\frac{1}{\sqrt{2}}(|g\rangle+|e\rangle) \xrightarrow{c} \frac{1}{\sqrt{2}}\left(|g\rangle\left|\alpha e^{-i \xi}\right\rangle+|e\rangle\left|\alpha e^{i \xi}\right\rangle\right)$
■ $\frac{1}{\sqrt{2}}\left(|g\rangle\left|\alpha e^{-i \xi}\right\rangle+|e\rangle\left|\alpha e^{i \xi}\right\rangle\right) \xrightarrow{R_{2}}$
$\frac{1}{2}\left(\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|g\rangle+\frac{1}{2}\left(-\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|e\rangle$.
$\square \frac{1}{2}\left(\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|g\rangle+\frac{1}{2}\left(-\left|\alpha e^{-i \xi}\right\rangle+\left|\alpha e^{i \xi}\right\rangle\right)|e\rangle \xrightarrow{\text { Detection }}$
■ $| \pm\rangle=\frac{1}{\sqrt{2}}\left(\left|\alpha e^{i \xi}\right\rangle \pm\left|\alpha e^{-i \xi}\right\rangle\right)$

CONTINUED

Photon field

State of photonic field left behind in cavity.

state $|g\rangle$ the field is in the field $|+\rangle$, if the atom is detected in the state $|e\rangle$ the field is in the state $|-\rangle$.

CONTINUED

Photon field

State of photonic field left behind in cavity.

state $|g\rangle$ the field is in the field $|+\rangle$, if the atom is detected in the state $|e\rangle$ the field is in the state $|-\rangle$.

Mesoscopic distinguishability.
To measure the degree to which components $\left|\alpha e^{i \xi}\right\rangle$ and $\left|\alpha e^{-i \xi}\right\rangle$ represent mesoscopically or macroscopically distinguishable states- we consider $\left|\left\langle\alpha e^{i \xi} \mid \alpha e^{-i \xi}\right\rangle\right|^{2}=e^{-4|\alpha|^{2} \sin ^{2} \xi}$.

CONTINUED

Photon field

State of photonic field left behind in cavity.

state $|g\rangle$ the field is in the field $|+\rangle$, if the atom is detected in the state $|e\rangle$ the field is in the state $|-\rangle$.

Mesoscopic distinguishability.
To measure the degree to which components $\left|\alpha e^{i \xi}\right\rangle$ and $\left|\alpha e^{-i \xi}\right\rangle$ represent mesoscopically or macroscopically distinguishable states- we consider $\left|\left\langle\alpha e^{i \xi} \mid \alpha e^{-i \xi}\right\rangle\right|^{2}=e^{-\left.4|\alpha|\right|^{2} \sin ^{2} \xi}$. For mean number of photons $|\alpha|^{2} \approx 10$ and $\xi=0.31$

$$
\left|\left\langle e^{i \xi} \mid \alpha e^{-i \xi}\right\rangle\right|^{2}<3 \times 10^{-5} .
$$

DECOHERENCE

■ State $| \pm\rangle=\frac{1}{\sqrt{2}}\left(\left|\alpha e^{i \xi}\right\rangle \pm\left|\alpha e^{-i \xi}\right\rangle\right)$ are superpositions in the observable basis.

DECOHERENCE

■ State $| \pm\rangle=\frac{1}{\sqrt{2}}\left(\left|\alpha e^{i \xi}\right\rangle \pm\left|\alpha e^{-i \xi}\right\rangle\right)$ are superpositions in the observable basis.

■ Decoherence is expected.

DECOHERENCE

■ State $| \pm\rangle=\frac{1}{\sqrt{2}}\left(\left|\alpha e^{i \xi}\right\rangle \pm\left|\alpha e^{-i \xi}\right\rangle\right)$ are superpositions in the observable basis.

- Decoherence is expected.

■ To measure the time dependence of decoherence a second rubidium atom is sent through at varying wait time.

- It can be shown that under zero decoherence $P_{e e}=1$, probability of first and second atom being detected in the excited state. On the other hand, under full decoherence $P_{e g}=1$, the probability of finding the second atom in the ground state is 1.
■ A useful measuring tool of decoherence.

$$
\eta(\tau)=P_{e e}(\tau)-P_{e g}(\tau)
$$

Two-Atom Correlation Signal.

Two-Atom Correlation Signal. $\eta(\tau):=P_{e e}(\tau)-P_{e g}(\tau)$.

Two-Atom Correlation Signal.

Two-Atom Correlation Signal. $\eta(\tau):=P_{e e}(\tau)-P_{e g}(\tau)$.

Decoherence time scale $T_{d}=\frac{T_{r}}{2|\alpha|^{2} \sin ^{2} \xi}$.

Two-Atom Correlation Signal.

Two-Atom Correlation Signal. $\eta(\tau):=P_{e e}(\tau)-P_{e g}(\tau)$.

Decoherence time scale $T_{d}=\frac{T_{r}}{2|\alpha|^{2} \sin ^{2} \xi} . T_{r}$ damping time of cavity.

DECOHERENCE FREE SUBSPACES

Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$

■ Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$
$\square\left|\psi_{S}\right\rangle \otimes\left|\psi_{E}\right\rangle:=\left|\psi_{S E}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}:=\mathscr{H}_{\text {tot }}$.

FROM EARLIER

■ Total system has some Hilbert space $\mathscr{H}_{S} \otimes \mathscr{H}_{E}$

■ $\left|\psi_{\mathrm{S}}\right\rangle \otimes\left|\psi_{\mathrm{E}}\right\rangle:=\left|\psi_{\mathrm{SE}}\right\rangle \in \mathscr{H}_{S} \otimes \mathscr{H}_{E}:=\mathscr{H}_{\text {tot }}$.
■ Dynamics provided by Schrödinger's equation.
$i \hbar \partial_{t}\left|\psi_{\text {SE }}(t)\right\rangle=H\left|\psi_{\text {SE }}(t)\right\rangle$ where $H=H_{S}+H_{E}+H_{l}$, a Hermitian operator in $\mathscr{B}\left(\mathscr{H}_{\text {SE }}\right)$.

■ $\left|\psi_{S E}(t)\right\rangle=e^{-\frac{i t}{\hbar} H}$. Just like before.

Decoherence in measurement limit

\square Let $H_{l}=\sum_{i} S_{i} \otimes E_{i}$.

Decoherence in measurement limit

- Let $H_{I}=\sum_{i} S_{i} \otimes E_{i}$.
- Time evolution of product state

$$
\rho_{S E}(0)=\left\{\sum_{1, m} c_{m} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right\} \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right| .
$$

DECOHERENCE IN MEASUREMENT LIMIT

- Let $H_{I}=\sum_{i} S_{i} \otimes E_{i}$.
- Time evolution of product state

$$
\rho_{S E}(0)=\left\{\sum_{1, m} c_{m} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right\} \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right| .
$$

- $\rho_{\boldsymbol{S}}(t)=$

$$
\operatorname{Tr}_{E}\left\{e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left(\left\{\sum_{1, m} c_{m} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right\} \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right|\right) e^{i \frac{i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\right\}
$$

This partial trace in general reduces to some state of the form,

$$
\rho_{s}(t)=\sum_{l, m} a_{l}(t) a_{m}^{*}(t)\left|s_{l}\right\rangle\left\langle s_{m}\right|
$$

with $a_{l}(t) a_{m}^{*}(t) \rightarrow 0$ as $t \rightarrow \infty$ forl $\neq m$.

Decoherence Free Subspaces.

From what space $\mathscr{H}_{C} \subset \mathscr{H}_{A}$ may we construct superpositions $\sum_{l} c_{l}\left|s_{l}\right\rangle$ that are immune to decoherence?

Decoherence Free Subspaces.

From what space $\mathscr{H}_{C} \subset \mathscr{H}_{A}$ may we construct superpositions $\sum_{l} c_{l}\left|s_{l}\right\rangle$ that are immune to decoherence? i.e.

$$
\begin{gathered}
\operatorname{Tr}_{E}\left\{e^{-\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right] \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right|\right) e^{i t} \sum_{k} s_{k} \otimes E_{k}\right\}= \\
=\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|
\end{gathered}
$$

Decoherence Free Subspaces.

From what space $\mathscr{H}_{C} \subset \mathscr{H}_{A}$ may we construct superpositions $\sum_{l} c_{l}\left|s_{l}\right\rangle$ that are immune to decoherence? i.e.

$$
\begin{gathered}
\operatorname{Tr}_{E}\left\{e^{-\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right] \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right|\right) e^{i t} \sum_{k} s_{k} \otimes E_{k}\right\}= \\
=\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|
\end{gathered}
$$

Need $\left\{\phi_{i}\right\}_{i}$ ONB, with the exotic property of forming a degenerate eigen space for all S_{k}.

Decoherence Free Subspaces.

From what space $\mathscr{H}_{C} \subset \mathscr{H}_{A}$ may we construct superpositions $\sum_{l} c_{l}\left|s_{l}\right\rangle$ that are immune to decoherence? i.e.

$$
\begin{gathered}
\operatorname{Tr}_{E}\left\{e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\left(\left[\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|\right] \otimes\left|E_{0}\right\rangle\left\langle E_{0}\right|\right) e^{\frac{i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}}\right\}= \\
=\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right|
\end{gathered}
$$

Need $\left\{\phi_{i}\right\}_{i}$ ONB, with the exotic property of forming a degenerate eigen space for all S_{k}.

$$
\begin{gathered}
\left|\psi_{S E}(t)\right\rangle=e^{\frac{-i t}{\hbar} \sum_{k} s_{k} \otimes E_{k}} \sum_{l} c_{l}\left|s_{l}\right\rangle \otimes\left|E_{0}\right\rangle= \\
=\sum_{l} c_{l} e^{\left.\frac{-i t}{\hbar} \sum_{k} \lambda_{k}\right|_{A} \otimes E_{k}}\left|s_{l}\right\rangle \otimes\left|E_{0}\right\rangle=\sum_{l} c_{l}\left|s_{l}\right\rangle \otimes\left[e^{-\frac{-i t}{\hbar} \sum_{k} \lambda_{k} E_{k}}\left|E_{0}\right\rangle\right]
\end{gathered}
$$

Partial Trace

Let us now partial trace the corresponding density matrix.

$$
\rho_{S}(t)=\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right| \operatorname{Tr}_{E}\left[e^{\frac{-i t}{\hbar}} \sum_{k} \lambda_{k} E_{k}\left|E_{0}\right\rangle\left\langle E_{0}\right| e^{\frac{i t}{\hbar} \sum_{k} \lambda_{k} E_{k}}\right]
$$

Partial Trace

Let us now partial trace the corresponding density matrix.

$$
\rho_{S}(t)=\sum_{l, m} c_{l} c_{m}^{*}\left|s_{l}\right\rangle\left\langle s_{m}\right| \operatorname{Tr}_{E}\left[e^{\frac{-i t}{\hbar} \sum_{k} \lambda_{k} E_{k}}\left|E_{0}\right\rangle\left\langle E_{0}\right| e^{\frac{i t}{\hbar} \sum_{k} \lambda_{k} E_{k}}\right]
$$

The trace term is just one since density matricese have trace one under unitary evolution.

$$
\rho_{S}(t)=\sum_{l, m} c_{l} c_{m}^{*}
$$

Decoherence free!!

EXAMPLE, SYMMETRIC DEPHASING

Consider a system of N qubits coupled to its environment in the follwoing way.

$$
\begin{gathered}
|0\rangle_{j} \rightarrow|0\rangle_{j} \\
|1\rangle_{j} \rightarrow e^{i \phi}|1\rangle_{j} .
\end{gathered}
$$

j indexes over all qubits.

EXAMPLE, SYMMETRIC DEPHASING

Consider a system of N qubits coupled to its environment in the follwoing way.

$$
\begin{gathered}
|0\rangle_{j} \rightarrow|0\rangle_{j} \\
|1\rangle_{j} \rightarrow e^{i \phi}|1\rangle_{j} .
\end{gathered}
$$

j indexes over all qubits. Let the initial state be

$$
|\psi\rangle_{0}=\bigotimes_{j=1}^{N}\left(a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j}\right) .
$$

EXAMPLE, SYMMETRIC DEPHASING

Consider a system of N qubits coupled to its environment in the follwoing way.

$$
\begin{gathered}
|0\rangle_{j} \rightarrow|0\rangle_{j} \\
|1\rangle_{j} \rightarrow e^{i \phi}|1\rangle_{j} .
\end{gathered}
$$

j indexes over all qubits. Let the initial state be

$$
|\psi\rangle_{0}=\bigotimes_{j=1}^{N}\left(a_{j}|0\rangle_{j}+b_{j}|1\rangle_{j}\right) .
$$

The dephasing process evolves our system into the following state.

$$
|\psi\rangle_{\phi}=\bigotimes_{j=1}^{N}\left(a_{j}|0\rangle_{j}+b_{j} e^{i \phi}|1\rangle_{j}\right)
$$

with a probability p_{ϕ}

EXAMPLE CONTINUED

The ensemble $\left\{|\psi\rangle_{\phi}, \boldsymbol{p}_{\phi}\right\}$ can be expressed equivalently as a mixed state.

$$
\rho=\int \boldsymbol{p}_{\phi}|\psi\rangle_{\phi}\langle\psi| \boldsymbol{d} \phi
$$

EXAMPLE CONTINUED

The ensemble $\left\{|\psi\rangle_{\phi}, \boldsymbol{p}_{\phi}\right\}$ can be expressed equivalently as a mixed state.

$$
\begin{gathered}
\rho=\int p_{\phi}|\psi\rangle_{\phi}\langle\psi| d \phi \\
|\psi\rangle_{\phi}\langle\psi| \rightarrow \bigotimes_{j=1}^{N}\left[\begin{array}{cc}
\left|a_{j}\right|^{2} & a_{j} b_{j}^{*} e^{-i \phi} \\
a_{j}^{*} b_{j} e^{i \phi} & |b|^{2}
\end{array}\right] .
\end{gathered}
$$

EXAMPLE CONTINUED

The ensemble $\left\{|\psi\rangle_{\phi}, \boldsymbol{p}_{\phi}\right\}$ can be expressed equivalently as a mixed state.

$$
\begin{gathered}
\rho=\int p_{\phi}|\psi\rangle_{\phi}\langle\psi| d \phi \\
|\psi\rangle_{\phi}\langle\psi| \rightarrow \bigotimes_{j=1}^{N}\left[\begin{array}{cc}
\left|a_{j}\right|^{2} & a_{j} b_{j}^{*} e^{-i \phi} \\
a_{j}^{*} b_{j} e^{i \phi} & |b|^{2}
\end{array}\right] .
\end{gathered}
$$

For a Gaussian distribution $p_{\phi}=\left(4 \pi \alpha^{-\frac{1}{2}}\right) e^{\frac{-\phi^{2}}{4 \alpha}}$ we have

$$
\rho \rightarrow \bigotimes_{i=1}^{N}\left[\begin{array}{cc}
\left|a_{j}\right|^{2} & a_{j} b_{j}^{*} e^{-\alpha} \\
a_{j}^{*} b_{j} e^{-\alpha} & |b|^{2}
\end{array}\right] .
$$

There is indeed decoherence present, lets look for some DFS.

EXAMPLE CONTINUED

For starters lets consider the case $N=2$. The dephasing for each of the constituents of the corresponding Hilbert space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is summarized by the following.

■ $|00\rangle \rightarrow|00\rangle$
■ $|01\rangle \rightarrow e^{i \phi}|01\rangle$
■ $|10\rangle \rightarrow e^{i \phi}|10\rangle$
■ $|11\rangle \rightarrow e^{2 i \phi}|11\rangle$.

EXAMPLE CONTINUED

For starters lets consider the case $N=2$. The dephasing for each of the constituents of the corresponding Hilbert space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is summarized by the following.

■ $|00\rangle \rightarrow|00\rangle$
■ $|01\rangle \rightarrow e^{i \phi}|01\rangle$
■ $|10\rangle \rightarrow e^{i \phi}|10\rangle$
■ $|11\rangle \rightarrow e^{2 i \phi}|11\rangle$.

$$
\operatorname{Span}\{|01\rangle,|10\rangle\} ?
$$

EXAMPLE CONTINUED

For starters lets consider the case $N=2$. The dephasing for each of the constituents of the corresponding Hilbert space $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ is summarized by the following.
$\square|00\rangle \rightarrow|00\rangle$
■ $|01\rangle \rightarrow e^{i \phi}|01\rangle$
■ $|10\rangle \rightarrow e^{i \phi}|10\rangle$
■ $|11\rangle \rightarrow e^{2 i \phi}|11\rangle$.

$$
\operatorname{Span}\{|01\rangle,|10\rangle\} ?
$$

check...

$$
|\psi\rangle=a|01\rangle+b|10\rangle \rightarrow a e^{i \phi}|01\rangle+b e^{i \phi}|10\rangle=e^{i \phi}|\psi\rangle
$$

It works!!

EXAMPLE CONTINUED

For $N=3$ the largest DFS is $\operatorname{Span}\{|001\rangle,|010\rangle,|100\rangle\}$ or
$\operatorname{Span}\{|011\rangle,|101\rangle,|110\rangle\}$

EXAMPLE CONTINUED

For $N=3$ the largest DFS is $\operatorname{Span}\{|001\rangle,|010\rangle,|100\rangle\}$ or
Span $\{|011\rangle,|101\rangle,|110\rangle\}$ In general max[dim(DFS $)]=\binom{N}{F\left(\frac{N}{2}\right)}$

EXAMPLE CONTINUED

For $N=3$ the largest DFS is $\operatorname{Span}\{|001\rangle,|010\rangle,|100\rangle\}$ or
Span $\{|011\rangle,|101\rangle,|110\rangle\}$ In general max[dim(DFS)] $=\binom{N}{F\left(\frac{N}{2}\right)} \mathrm{A}$
textbook application of stirling's formula yields the following.

$$
\frac{\left|\max [\operatorname{Dim}(D F S)]-2^{N}\right|}{2^{N}} \rightarrow 1
$$

EXAMPLE CONTINUED

For $N=3$ the largest DFS is $\operatorname{Span}\{|001\rangle,|010\rangle,|100\rangle\}$ or Span $\{|011\rangle,|101\rangle,|110\rangle\}$ In general max[dim(DFS)] $=\binom{N}{F\left(\frac{N}{2}\right)} \mathrm{A}$
textbook application of stirling's formula yields the following.

$$
\frac{\left|\max [\operatorname{Dim}(D F S)]-2^{N}\right|}{2^{N}} \rightarrow 1 .
$$

The dimension of the optimal DFS becomes relatively close to the dimension of the system for large N.

FUTURE WORK

FUTURE WORK

■ Study robustness of DFS under perturbations.

FUTURE WORK

■ Study robustness of DFS under perturbations.
■ Find a way to simulate large spin environments.

FUTURE WORK

■ Study robustness of DFS under perturbations.
■ Find a way to simulate large spin environments.

- Decoherence theory in infinite dimensional Hilbert spaces and extending SBS theory to such systems.

THANKS

Thank you for your time.

References

围
M．A．Nielsen，I．L．Chuang Quantum Computation and Quantum information，（Cambridge University Press，Cambridge，10th EDITION，2011）．

M．Schlosshauer Decoherence and the Quantum－To－Classical Transition，（Springer－Verlag，Berlin Heidelberg，2007）．
W．h．Zurek Preferred Observables，Predictability，Classicality， And The Environment－Induced Decoherence．，（Theoretical Astrophysics，los Alamos National Laboratory，1994）．
图 D．A．Lidar Review of Decoherence Free Subspaces，Noiseless Subsystems，and Dynamical Decoupling．，（Official publication cite other than arxiv unknown，USC，Los Angeles，California 2013．）
目 K．Fuji Introduction to the Rotating Wave Approximation，（RWA） ：Two Coherent Oscillations，（International College of Arts and SCiences，Yоконama City University，Yокоhama，Japan 2014．）
回 Townsend Quantum Mechanics，（Cambridge University Press， CAMbridge，10th edition，2011）．

References

目 H. M. Wiseman, G. J. Milburn Quantum Measurement and Control, (Cambridge University Press, Cambridge, 2009).
R R. Alicki, K. Lendi Quantum Dynamical Semigroups and Applications, 2nd Edition, Vol. 717 of Lect. Notes Phys., (Springer, Berlin/Heidelberg, 2007.)

- M. Schlosshauer Quantum Decoherence., (Department of Physics University of Portland, Portland USA, 2019.)
E. Joos, h.D. Zeh The emergence of Classical properties through interaction with the environment., (Z.Phisik B- Condensed Matter 59, 223-243, 1985.)
- N.V. Prokof'ev, P.C.E. Stamp , Theory of the spin bath, (Rep. Progr. Phys. 63 (2000) 669-726)
F. M. Cucchietti, J. P. Paz, W. H. Zurek, Gaussian Decoherence from random spin environments, (Phys. Rev. A 72 (2005) 052113)

References

－M．Brune，E．Hagley，J．Dreyer，X．Maitre，A．MaAli，C．Wunderlich，J． M．Raimond，S．Haroche，Observing the progressive decoherence of the＂meter＂in a quantum measurement，（Phys．Rev．Lett． 77 （1996）4887－4890）

國 X．Maitre，E．Hagley，J．Dreyer，A．MaAli，C．W．M．Brune，J．M． Raimond，S．HAROCHE，AN EXPERIMENTAL STUdY of A SChrodinger CAT decoherence with atoms and Cavities，（ J．Mod．OPT． 44 （1997） 2023－2O32）
目 J．M．Raimond，M．Brune，S．Haroche，Manipulating quantum entanglement with atoms and photons in a cavity，（ Rev．Mod． PhYS． 73 （2001）565－582）
國 B．Brezger，L．Hackerm＂uller，S．Uttenthaler，J．Petschinka，M． ARNDT，A．Zeilinger，MAtter－WAVE Interferometer for large MOLECULES，（ Phys．Rev．Lett． 88 （2002）100404）

References

(in Hornberger, S. Gerlich, S. Nimmrichter, P. Haslinger, M. Arndt, Colloquium: Quantum interference with clusters and molecules, (Rev. Mod. Phys. 84 (2012) 157-173)

俥
B. Brezger, L. Hackerm "uller, S. Uttenthaler, J. Petschinka, M. Arndt, A. Zeilinger Matter-wave interferometer for large molecules, (Phys. Rev. Lett. 88 (2002) 100404.)
回 L. Hackerm"uller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt, Decoherence in a talbot-Lau interferometer: the influence of molecular scattering, (Appl. Phys. B 77 (2003) 781-787.)
K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermuller, M. Arndt, A. Zeilinger, Collisional decoherence observed in matter wave interferometry, (Phys. Rev. Lett. 90 (2003) 160401.)
-i M. H. Devoret, R. J. Schoelkopf, Superconducting circuits for QUANTUM INFORMATION: AN OUTLOOK, (SCIENCE 339 (2013) 1169-1174.)
R. Haffner, C. F. Roos, R. Blatt, Quantum computing with trapped

