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1 Introduction

1.1 Closed vs Open
In undergraduate and often times in graduate courses on quantum mechanics, quantum mechanical systems

are systematically considered to be closed; that is to say, one assumes that the system in question constitutes
all of the information about its evolution, ignoring any interactions that might be present between the system
in question and the rest of the universe. This assumption is made tacitly by assuming that Schrödinger’s
equation governs all quantum phenomena, and that we may always find some Hamiltonian that generates
the dynamics. Indeed this is often a great approximation when considering time-independent systems and or
highly isolated systems. The Energy spectrum of the Hydrogen atom for example may be deduced via con-
sidering this system to be a closed system [1]. Schrödinger’s equation is an equation that generates unitary
evolution, this will be seen later, as a result there is no dissipation or decoherence [5] which are processes
where energy and "quantumness" is not preserved respectively. More on what we mean by "quantumness"
in the following section. Decoherence and dissipation are inevitable, every quantum system will experience
both of these environmentally induced processes. There do exist interactions which may be approximately
described by a closed system with high precision, but in these cases decoherence, a fundamental quantum
mechanical process that occurs when a quantum system is measured/interacted with, is explained only by
the Copenhagen interpretation [3] of quantum mechanics which says that upon being measured, a quantum
system instantaneously collapses to a definite state within theHilbert space associated with the quantum sys-
tem. This occurs with some probability distribution governing the "collapse" , look at the section on POVM
[4] . This is at odds with the seemingly continuous world we live in, and one might guess that the Copen-
hagen school of thought has missed something fundamental. Indeed decoherence is not a phenomenon that
occurs instantaneously, decoherence time scales which vary from system to system [11] (pg 66) can actually
be computed if one considers the more realistic setting where the system in question, referred to as S in this
paper, and the associated environment, referred to as E, are both treated as a quantum system and the system
of interest S sits within E, interacting with E via some Hamiltonian. A typical "environment" E might be
an electromagnetic field which fixes the orientation of a spin a midst the electromagnetic field. If our interest
lies in the dynamics of the spin then we may deduced the local dynamics of the spin, now an open system, via
partial a partial tracing technique to be discussed in this paper’s section 1.4. By considering a larger system
one may use our familiar Schrödinger equation as a starting point and later deduce the reduced dynamics of
S. Ideally we hope to obtain the unitary evolution for the total dynamics and deduce the dynamics local to S
but, as it will be seen in what is to come, this is no easy venture. We will develop methods for deducing the
reduced dynamics and apply said methods to a Two-Level system. The resulting equations will be themselves
formidably difficult to solve and for this one may turn to Monte-Carlo techniques which is the focus of this
paper. The Two-Level system presented is easily soluble via simple ODE methods but will serve as a testing
ground for the Quantum Jump approach eluded to here.

1.1.1 Examples of open systems

Quantum mechanics is a theory of matter which is more fundamental than the classical theories afforded
by Newtonian dynamics and Maxwell’s equations. Quantum mechanics is therefore the correct theory to
describe anything around us. In this sense, everything is a Quantum Open system because everything we
deemed to be a system will sit within a larger system. If the latter where not to be the case we would inevitably
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have to face the Heisenberg-Cut dilemma [15] which asks were does one draw the boundary between the
classical and the quantum. Classical beings nevertheless exist in a realm where so called quantum effects
may be negligible and classical mechanics is enough to aid us in the understanding of our environment.
However, recent interest in technology which is on the Nano scale has functioned as the impetus of a deeper
interest regarding the non-unitary (open systems) dynamics of quantum mechanical systems. Some Quantum
computers constructed by IBM for example are built from tiny Quantum circuits which are highly susceptible
to minuscule disturbances coming from its entourage. In order to truly understand these Quantum circuits and
their dynamical properties, a strong understanding of the non unitary evolution must be taken into account and
this requires us to consider the quantum system as open. For more information on quantum computers, their
hardware components, architecture and interface I recommend the interested reader to visit IBM’s webpage
[16].

1.2 Unitary Evolution
In the filed of Quantum Mechanics for closed systems one is tasked with solving the Schrödinger equation

i∂t|ψ(t)〉 = H|ψ(t)〉 (~ = 1) (1)

where the state |ψ(t)〉 is a vector in some Hilbert space, call it HS , and H is a self-adjoint/Hermitian oper-
ator that acts on HS . In this paper we may assume that H ∈ B(HS) (the space of bounded linear operators
over HS since we will be focusing on finite dimensional Quantum Mechanical systems, i.e. systems whose
state may be described by a finite dimensional complex valued vector. The notation |ψ(t)〉 will represent a
column vector while the notation 〈ψ(t)| will represent a row vector. Indeed, |ψ(t)〉† := 〈ψ(t)|. The solution
to equatiion 1 is

e−itH |ψ(0)〉 (2)

where |ψ(0)〉 is the initial state of the system. However, the story does not end there. We would like to
understand the effect of the unitary operator e−itH := U(t) upon acting on |ψ(0)〉. In general this will
require one to solve the eigenvalue problem for the operator H

H|φn〉 = λn|φ〉. (3)

Assuming that we have solved the eigenvalue problem for H we may write |ψ(0)〉 in 2 as follows.

U(t)|ψ(0)〉 = eitH
∑
n

αn|φn〉 =
∑
n

αne
itλn |φn〉, {αk}k ∈ l2(C) (4)

If the operatorH is not too difficult to diagonalize then we have no true hurdles to overcome. In the infinite
dimensional case whereH is a linear combination of multiplication and differential operators however, things
are far from trivial and doing the infinite dimensional analog of diagonalization can present many pitfalls.
One highly studied infinite dimensional system is the Quantum Harmonic oscillator with H = ap̂2 + bx̂2.
Diagonalization of such system is successfully done with the Hermite functions which are also referred to
as the number states in the literature. These types of systems are beyond the scope of this paper but a nice
summary of Quantum Harmonic oscillators may be found in [1] chapter 7.

1.3 The Density operator.
Let us take a step back and rewrite the Schrödinger equation as follows [4] (Chapter 2),

ρ(t) = −i
[
H, ρ(t)

]
. (5)

This is called the Liouville-von Neumann (Lv) equation and it is often useful to work with the density op-
erators ρ(t) := |ψ(t)〉〈ψ(t)| rather than vectors. Before we move on let us discuss the operator ρ(t). These
so called density operators have the follwoign properties [4](chapter 2). For a pure state, i.e. one of the for
ρ(t) = |ψ(t)〉〈ψ(t)|

• ρ(t) is a projection operator.

• ρ(t)2 = ρ(t)
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• Tr{ρ(t)} = 1 = Tr{ρ2(t)}.

• ρ = ρ† ( self-adjoint, eigenvalues are real)

• For some observable A, the expectation value is computed as 〈A〉 = Tr
{
Aρ
}

Where the trace is defined as follows, letting {|φn〉}n be some orthonormal basis spanning the space that ρ(t)
is acting on.

Tr{ρ(t)} =
∑
n

〈ψn|ρ(t)|ψn〉

Density operators may be mixtures of a family of density operators as well. We will call these latter types of
density operators mixed states. Mixed states will still be positive trace class operators of trace one but their
square will no longer be trace 1. i.e. letting σ(t) =

∑
n pnρn(t), with

∑
n pn = 1, it can be shown that

Tr{σ2(t)} ≤ 1 [4] (Chapter 2). The aforementioned "quantumess" of a density operator may be quantified
by the "purity", defined by Tr{ρ2}. If the purity is 1 then we are in the quantum probability regime, while
in the case where the purity is 1 we find ourselves in the classical probability regime. To see this let us start
with a d dimensional Hilbert space with orthonormal basis {|φn〉}n and consider a pure state ρ(t) acting over
said space. ρ(t) may then be written as

ρ(t) = |ψ(t)〉〈ψ(t)| =
∑
n,m

αn(t)α∗m(t)|φn〉〈φm|. (6)

Above we may appreciate the byproduct of the superposition, these are the off-diagonal elements to the
state matrix under the representation afforded by the basis {|φn〉}n which may be the eigenbasis of some
observable of interest. These off-diagonal entries represent the "quantumness" of the relevant system since
they are in one-to-one correlation with the superposition of the eigenbasis of a given observable. Via a non
unitary process, such as the ones that we will develop in the section to come, the off-diagonal entries banish.
Let us now take note of the resulting operator.

ρ(t) = |ψ(t)〉〈ψ(t)| =
∑
n

|αn(t)|2|φn〉〈φn| (7)

If we consider a time independent uniform distribution for the |αn(t)|2, then the sate above is simply

ρ(t) = |ψ(t)〉〈ψ(t)| =
∑
n

1

d
|φn〉〈φn| (8)

where, again, d is the dimension of the space spanned by {φn}. The trace of 8 is easily computed to be 1
d . 8

is classical because it associates a classical probability distribution to the observable whose eigenvectors are
{|φn〉}.

Let us now return to 5, solving Lv it immediately follows that

ρ(t) = U(t)ρ(0)U†(t) := Ut

(
ρ(0)

)
(9)

i.e. the time evolution of some initial density operator ρ(0) is generated by a unitary map Ut. In general the
closed system approximation does not hold and one must allow for non-unitarity when treating a Quantum
Mechanical system. i.e. the evolution of some initial state matrix ρ(0) would instead be governed by some
unitary map Ut that is an automorphism from the space of trace one trace class operators that are self adjoint
onto itself. In such cases equation would have to be replaced with something involving a completely positive
map Λt [6] forming part of a so called Quantum dynamical semigroup which we will define shortly under the
name of dynamical maps below. However, to understand what is to come we must first develop further the
trace map and introduce the notion of partial trace.

1.4 Partial trace
The point of departure for quantum open systems is assuming that the system in question is interacting

with another systems which we will call the environment. The total dynamics will not be what we will be
interested in but rather the local dynamics of the system of interest. To treat compound quantum systems one
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need only construct bigger Hilbert spaces. If we have a quantum system whose state |ψS〉 evolves within
the space HS and interacts with another quantum system whose state |ψE〉 evolves within the Hilbert space
HE then the the total state of the compound system to be in the space HS ⊗HE .The most general state that
describes the state of the compound quantum system in question will be of the form

min{n,m}∑
i=1

αi|ψi〉 ⊗ |φi〉 (10)

where {|ψi〉}mi=1 and {|φi〉}ni=1 are orthonormal basis (ONB) for HS and HE respectively. This is called a
Schmidt decomposition [4].

1.4.1 The environment as a quantum system

Let us take the environment to be the system, also quantum, whose state evolves in the Hilbert space HE ,
dim(HE) = n with ONB{Ei}i. The "system" S will be a quantum system whose state lives in the Hilbert
space HS , dim(HS) = m with ONB {|ψi}i. The total state of the compound system will therefore live in
HS ⊗HE . Compound quantum systems of this form are the building blocks of a quantum open systems
if the dynamics is generated by a Hamiltonian HSE = HS + HE + HI which includes the interaction
dynamics between the system and the environment HI . Ignoring the dynamics for now let |ψSE(0)〉 be some
initial state, then in general it will have the form

|ψSE(0)〉 =

m∑
i=1

αi|ψi〉 ⊗ |Ei〉. (11)

The corresponding density matrix is

|ψSE(0)〉〈ψSE(0)| = ρSE =
∑
i

∑
j

αiα
∗
j |ψi〉〈ψj | ⊗ |Ei〉〈Ej |. (12)

Here we have the state of the total system. However, if we are only interested in how S evolves with time,
or what the local state of the system S is, we need a way to deduced the local dynamics. How do we obtain
the state matrix pertaining only to the system S? It turns out that we need to trace out the degrees of freedom
pertaining to the environment [5](Chapter 2). The resulting matrix, TrE{ρSE(0)}, is the state matrix of the
system S, call it ρS . The partial trace TrE is defined as follows.

Definition 1. TrE{} : T (HS ⊗ HE) → T (HS) The partial trace TrE is a mapping from the density

matrices ρSE = |ψSE〉〈ψSE | in the Banach space T (HS ⊗HE) of trace-class operators on the Hilbert
space HS ⊗HE to ρS ∈ T (HS).

T rE{|ψSE〉〈ψSE |} :=
∑
i〈φi|ψSE〉〈ψSE |φi〉

{|φi〉} is some ONM of HE , it can be shown that the partial trace is basis independent.

This mapping yields the appropriate reduced dynamics that allows us to see how the environment E
affects our system S without having to keep track of what the environment is doing. Here is the partial trace
of the state in equation 12.

TrE{ρSE(0)} =
∑
k

∑
i

∑
j

αiα
∗
j |ψi〉〈ψj |〈Ek|Ei〉〈Ej |Ek〉 =

=
∑
i

∑
k

αiα
∗
k|ψi〉〈ψk|〈Ek|Ei〉 =

=
∑
k

|αi|2|ψk〉〈ψk|.

(13)

This is an astonishing results for two reasons. First, the resulting matrix is diagonal. Taking the partial trace
over the perfectly distinguishable environmental degrees of freedom has induced optimal decoherence (i.e.
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all of the off-diagonal elements are zero). Second, the resulting density matrix is a "mixed" state. This is
critical because the total state matrix prior to the partial tracing was a "pure" state. With this "reduced" density
matrix we can compute expectation values of any local observable, AS( self-adjoint) over HS as follows

〈AS〉 = TrS{ρSAS}. (14)

To reassure ourselves that the partial trace TrE is the appropriate mapping to use in order to deduce the
local dynamics lets consider an arbitrary observable AS over HS , there is a natural embedding of such an
observable that extends it to the space of observables over HS ⊗HE .

AS → AS ⊗ IE ,

where IE is the identity matrix in the HE . In quantum open systems one primarily interest themselves in the
statistical properties pertaining to observables of the form AS ⊗ IE . One can obtain the expectation value of
such an observable by using the total system’s state matrix as follows

〈AS ⊗ IE〉 = Tr{ρSE(AS ⊗ IE)}.

But for the separable case ρSE = ρS ⊗ ρE one immediately sees that

Tr{ρSE(AS ⊗ IE)} = Tr{ρSAS ⊗ ρE} = TS{ρSAS}TrE{ρE} = TrS{ρSAS}.

This means that precisely all of the information need to compute the statistical properties of some observable
in the system S is contained in the reduced density matrix ρS .

1.4.2 Environmentally induced non-unitarity

Let HSE be the Hamiltonian governing the dynamics of some quantum open system. Assuming that
the Hamiltonian is time independent, we can immediately make form of the time evolution operator of the
compound system. i.e. U = e−itHSE . Assuming that the system and the environment are uncorrelated at
t = 0 , i.e. ρSE(0) = ρS(0)⊗ ρE(0) and evolving the state matrix using the time evolution operator as well
as tracing out the environmental degrees of freedom we arrive at the following

ρS(t) = TrE{U(t)(ρS(0)⊗ ρE(0))U†(t)}. (15)

Now, assuming that the environment is in the state ρE(0) =
∑
i pi|Ei〉〈Ei| at t = 0 (this is immaterial and

does not affect generality) the above reduces to

ρS(t) =
∑
ij

pi〈Ej |U(t)|Ei〉ρS(0)〈Ei|U†(t)|Ej〉. (16)

The operators 〈Ej |U(t)|Ei〉 are called Kraus operators [2] and these operators evolve the state of the system S
non-unitarily. The Kraus operators carry information about the environments initial state and the dynamics of
the joint system SE , furthermore the map Λt :=

∑
ij pi〈Ej |U(t)|Ei〉[.......]〈Ei|U†(t)|Ej〉 is a trace preserv-

ing completely positive map and these Kraus operators have the property
∑
ij〈Ej |U(t)|Ei〉〈Ei|U†(t)|Ej〉 =

IS . The non-unitarity can present itself explicitly in two ways.

• The first is decoherence. The decaying of the off-diagonal elements in the reduced state matrix ρS(t).
Quantum coherences(i.e. interference terms, off-diagonal terms) are very delicate and if there is an
environment interacting with our system then the system is essentially being "measured" continuously
by said environment and measurements eliminate quantum coherences. We deliberately use the term
measurement in order to connect this description of decoherence to that of the Compenhagen inter-
pretation. This is a side note and we will have very little else to say about decoherence in this paper.
The interested reader may turn to the paper "Decoherence" by Schlosshauer [5]

• The second is dissipation, it is a common mistake to consider dissipation and decoherence as analogous
or even synonymous but this is incorrect. Indeed one can have decoherence without dissipation even
though dissipation is always accompanied by decoherence. A model that exhibits decoherence but no
dissipation is recoil less scattering for example. This is a very interesting model because although
the particles self dynamics are taken to be that of a free particle unhindered by the environmental
scattering, the system nevertheless undergoes exponential decoherence in in the position basis due to
the interaction with the environment.
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The problem is now evident, 16 requires us to compute the inner products 〈Ej |U(t)|Ei〉 but this is in general
an intractable task for many quantum open systems due to the requirement that we solve the eigenvalue
problem for the HSE . In practice it is the interaction terms in HSE that are quite challenging to work with.
Even if the eigen value problem for HE and HS is solved, both operators acting on different subspaces of
HS ⊗HE , the inclusion of HI forces the requirement of diagonalizing an operator acting on the total space
HS ⊗HE which is a formidable task.

In the case where we would like to avoid the eigenvalue problem for HSE we may work with the
differential version of 16. Before further discussing the differential version of 16 let us return to the maps
Λ(t) and motivate them a bit more. Let us assume that ρSE(0) = ρS(0)⊗ ρE(0). From 16 we have

ρS(t) =
∑
ij

pi〈Ej |U(t)|Ei〉ρS(0)〈Ei|U†(t)|Ej〉. (17)

A mapping defined as above,

ΛtρS(0) :=
∑
ij

pi〈Ej |U(t)|Ei〉ρS(0)〈Ei|U†(t)|Ej〉. (18)

is an instance of a dynamical map [10].

Definition 2. Dynamical map(informal definition): Λt : ρ(0)→ ρ(t) is said to be a dynamical map if it takes
an arbitrary quantum state ρ(0) to a final quantum state ρ(t) at some fixed t in accordance with the rules of
quantum mechanics.

Recall that 18 is obtained simply via the unitary evolution of the compound system and a partial trace
over environmental degrees of freedom. Schrödinger’s equation is responsible for the dynamics and therefore
18 is in accord with the rules of quantum mechanics making it a dynamical map. The Kraus operators [2]
〈Ej |U(t)|Ei〉 now written as Wji(t) are trace preserving operators over the Banach space of statistical
operators, i.e. trace class operators with trace one, satisfying the completeness constraint∑

ij

Wij(t)W
†
ji(t) = IS . (19)

The number of Kraus operators required to represent a dynamical map will always be bounded by dim(HS)2.
The most general way an open quantum system may evolve is expressed by 16, therefore any dynamical map
can be completely characterized in terms of a set of Kraus operators {Wij}ij .The classification problem for
completely positive maps has been solved and the relevant result is know as Choi’s theorem. This description
given for dynamical maps is very informal and will be the one used in the remainder of this paper, a more
formal definition is provided but not elaborated upon. In what follows D(HS) is the space of statistical
operators, i.e. density matrices of the system S.

Definition 3. Dynamical map(formal) A map Λt := D(HS) → D(HS)is a dynamical map iff it is a
completely positive map, has convex linearity and is trace preserving.

The family of dynamical maps {Λt|t ≥ 0} satisfying the semigroup condition ΛsΛt = Λs+t forms what
is referred to as a quantum dynamical semigroup. It can be shown that, under certain assumptions (we
will return to what this assumptions are later), there exists an operator L , as illustrated in Alicki et al [9]
such that

Λt = eL t. (20)

Now let us differentiate, a special type of derivative is needed here but we will not go into it, in the end it all
works out and the calculation below makes sense.

∂

∂t
ρS(t) =

∂

∂t
νtρS(0) =

∂

∂t
eL tρS(0) = L νtρS(0) = L ρS(t). (21)

L is called the Lindbladian [11], we can therefore conclude that the Lindbladian is the generator of the
dynamical semigroup {Λt|t ≥ 0}. This yields a so called master equation. For a general finite dimensional
Hilbert space HS = N , dimHS , the most general form of L is

L ρS(t) = −i[HS , ρS(t)] +
1

2

N2∑
n=1

{
2CnρS(t)C†n − C†nCnρS(t)− ρS(t)C†nCn

}
. (22)
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This is know as the GKSL(Gorini–Kossakowski–Sudarshan–Lindblad) equation and more may be learned
about it in [17]. The operators Cn are a set of N2 linear operators forming an orthonormal basis for the space
B(HS)[9], one of these elements will be proportional to the identity. The difficulty now lies in solving the
equation

∂tρS(t) = −i[HS , ρS(t)] +
1

2

N2∑
n=1

{
2CnρS(t)C†n − C†nCnρS(t)− ρS(t)C†nCn

}
which is equivalent to 22. In practice one arrives to such an equation via first considering the total Lv equation

ρSE(t) = −i
[
HSE , ρSE(t)

]
(23)

partial tracing over the environmental degrees of freedom. Under the so called Born-Markov approximation
such a partial trace leads to the GKSL equation.

2 Master Equations
So far we have tackled open systems by first computing the total system plus environment dynamics, uni-

tary time evolution U(t), and tracing out the environmental degrees of freedom after evolving some initial
compound state ρSE(0). Although the evolution due to U is unitary, tracing over the environmental degrees
of freedom will in general yield non-unitary dynamics. Unfortunately this approach requires that we solve
the eigenvalue problem in order to compute the inner products in equation 16. An approach more suited to
the Markov-Born limiting case [8] which we will formalize in this section allows us to instead start with the
relevant Lv equation.

∂tρSE(t) = −i[HSE , ρSE(t)] (24)

and solve by first taking the partial trace over the environment which yields a differential equation for the
evolution of the reduced density matrix.

∂tρS(t) = −iT rE{[HSE , ρSE(t)]} (25)

The partial trace term leads to a non-unitary dynamics which takes the form of a formidable deferential
equation which solutions are in general intractable, both analytically and numerically, for any practical case.
Fortunately one is usually not interested in the dynamics of the environment, this allows us to to focus only
on the system and the interaction dynamics. The mathematical treatment of the environment in this case may
be of some bath whose dynamics are approximately unperturbed by the system, this type of approximation
is referred as the Born approximation [8] (Chapter 3). This defines a specific type of open quantum system
whose initial and evolved states take the form ρSE(0) = ρS(0) ⊗ ρE(0) and ρSE(t) = ρS(t) ⊗ ρE(0)
respectively. Now, using this assumption the reduced (Lv) is approximately

∂tρS(t) = − i
~
TrE{[HSE , ρS(t)⊗ ρE(0)]}, (26)

formally integrating this equation we arrive at

ρS(t) = ρS(0)− i
∫ t

0

dt1TrE [HSE , ρS(t1)⊗ ρE(0)]. (27)

Let us now substitute equation 27 into 26.

∂tρS(t) = −iT rE{[HSE , ρS(0)⊗ ρE(0)]}+
i2

~2

∫ t

0

dt1TrE{[HSE , [HSE , ρS(t1)⊗ ρE(0)]]} (28)

This equation will be referred to as the pre-Markovian equation. We could formally integrate the above and
substitute the result back into 28 to obtain a term of third order in t, repeating this process indefinitely yields
a convoluted iterative solution to the dynamics. We will not bother expanding the series completely and will
stop at 28and use such an equation to derive the so calledBorn−Markov Master equation (BMME) which
is a local in time version of 28 obtained from appropriate approximations. In a nutshell the BMME amounts
to replacing the t1 in the state ρS(t1)⊗ ρE(0) with a t in 28. One then is left with the task of computing the
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resulting integral. There will be time dependence afforded by the HSE because here the interactive frame is
being used and HSE is actually e−it(HS+HE)HSEe

it(HS+HE). We swept the latter detail under the rug as to
not make this paper lengthier than it has already become. An at length discussion of the above may be found
in [8]. We present the Born-Markov approximation [8] assumptions below and then present an example.

1. Separability: At t = 0 there are no correlations between the system and its environment such that the
total density matrix can be written as a tensor product ρtot(0) = ρsys(0)⊗ ρenv(0).

2. Born approximation: Requires: (1) that the state of the environment does not significantly change as a
result of the interaction with the system; (2) The system and the environment remain separable through-
out the evolution. These assumptions are justified if the interaction is weak, and if the environment is
much larger than the system. In summary, ρtot(t) ≈ ρsys(t)⊗ ρenv(0).

3. The time-scale of decay for the environment τenv is much shorter than the smallest time-scale of the
system dynamics τsys >> τenv . This approximation is often deemed a “short-memory environment”
as it requires that environmental correlation functions decay on a time-scale fast compared to those of
the system

4. Secular approximation: Stipulates that elements in the master equation corresponding to transition
frequencies satisfy |ωab − ωcd| << 1

τsys
, i.e., all fast rotating terms in the interaction picture can be

neglected. It also ignores terms that lead to a small renormalization of the system energy levels. This
approximation is not strictly necessary for all master-equation formalisms (e.g., the Block-Redfield
master equation [8](Chapter 3)), but it is required for arriving at the Lindblad form 22.

2.1 Spontaneous emission
We further develop the theory of non-unitary dynamics and decoherence, in particular those governed by a

BMME via an example. Consider a two-level atom coupled to a bath and let the Hamiltonian

HSE =
ωa
2
σz +

∑
k

ωkb
†
kbk +

∑
k

(gkbk + gkb
†
k)(σ+ + σ−) (29)

describe the dynamics of the total system. Here we use the convention A ⊗ B := AB for the sake of visual
clarity. HS = ~ωa

2 σz is the self Hamiltonian of the system, HI =
∑
k(g∗kbk + gkb

†
k)(σ+ + σ−) is the

interaction Hamiltonian and HE = ~
∑
k ωkb

†
kbk is the bath Hamiltonian of the environment. We will

not elaborate in the spin algebra for the two level system nor the ladder operators of the quantum harmonic
oscillator being used here but any introductory quantum text book [1] will suffice as a resource to study this
operators as well as motivate them. Before moving on, we will switch to the interaction picture in order to
simplify things a bit. This allows us to trade in the equation

∂tρSE(t) = − i
~

[HSE , ρSE(t)] (30)

for the equivalent

∂tρint(t) = − i
~

[Hint, ρint(t)]. (31)

The new figures are defined bellow.

• ρint(t) = eit(HS+HE)ρSE(t)e−i(HS+HE)

• Hint = eit(HS+HE)HIe
−it(HS+HE)

The operator Hint simplifies to

~
∑
k

gk(b†kσ+e
it(ωa+ωk) + bkσ+e

it(ωa−ωk) + bkσ−e
−it(ωa+ωk) + b†kσ−e

−it(ωa−ωk))

with some help from the Baker-Campbell-Hausdorff theorem, wikipedia has a great over view on this theorem
if interested, I am using a lemma/ special case of this theorem.

eXY e−X = Y + [X,Y ] +
1

2!
[X[X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + ...
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In systems of this sort it is often reasonable to remove the terms involving ωa+ωk in the argument and retain
only the terms involving ωa − ωk. ωa + ωk is expected to be much larger than ωa − ωk, more can be said
about this but it would go beyond the scope of this paper so we refer the interested reader to the excellent
paper on the subject by Fuji [7] or Townsend’s text [1]. This type of approximation is known as theRotating
Wave Approximation and it merits use on the grounds that the terms involving ωa + ωk in the argument
simply average to zero in the time frame we are interested in and can thus be ignored without a significant
contribution to error.

Hint ≈
∑
k

gk(bkσ+e
it(ωa−ωk) + b†kσ−e

−it(ωa−ωk)). (32)

We may now take our approximatedHint and plug it into equation 28 assuming that theBorn approximation
is also applicable, indeed it is since a sea of oscillators can hardly be influenced by a single two-level atom.
Our pre-Markovian equation in this case is

∂tρS(t) = − i
~
TrE

{[
~
∑
k

(ak(t)bkσ+ + a∗k(t)b†kσ−), ρS(0)⊗ ρE(0)
]}

+
i2

~2

∫ t

0

dt1TrE

{[
~
∑
k

(ak(t)bkσ+ + a∗k(t)b†kσ−),
[
~
∑
k′

(ak′(t1)bk′σ+ + a∗k′(t1)b†k′σ−), ρS(t1)⊗ ρE(0)
]]}

.

(33)

ρS(t) is actually ρSint(t) but we remove the second subscript for clarity and ak is defined as gkeit(ωa−ωk).
To move forward an initial state must be specified, let ρSE(0) = ρS(0) ⊗ |Ω〉E〈Ω|. The system’s initial
state is yet to be defined and the environment is in the vacuum state, i.e. ground state. We can compute
TrE{[

∑
k(ak(t)bkσ++a∗k(t)b†kσ−), ρs(0)⊗|Ω〉E〈Ω|]}with relative ease. Using linearity of the commutator

and some properties of the tensor product, note that we have been using the short hand bkσ+ when referring
to bk ⊗ σ+, we can rewrite the above commutator as follows.∑

k

[σ+ + σ−, ρS(0)]TrE{[akbk +G∗kb
†
k, |Ω〉E〈Ω|]}. (34)

But TrE{[akbk + a∗kb
†
k, |Ω〉E〈Ω|]} =

∑
i〈Ei|([akbk + a∗kb

†
k, |Ω〉E〈Ω|])|Ei〉. The only term in the trace that

is non zero is the summand originating from the vacuum element. The trace therefore simplifies to

〈Ω|akbk|Ω〉 − 〈Ω|akbk|Ω〉+ 〈Ω|a∗kb
†
k||Ω〉 − 〈Ω|a

∗
kb
†
k|Ω〉,

which is zero since b|Ω〉 = 0 and 〈Ω|b† = 0. Furthermore it can be shown that the integral term in
equation (60) can be reduced to∫ t

0

dt1
∑
k

TrE{[(ak(t)bkσ+ + a∗k(t)b†kσ−), [ak(t1)bkσ+ + a∗k(t1)b†kσ−, ρS(t1)⊗ ρE(0)]]}. (35)

since only k = k
′

terms are non zero. Now we come face to face with a technical hurdle, we must now
compute the 16 partial traces originating from the integrand in the above. We will simply proceed to the result
but will display the fully expanded integrad bellow just to invoke appreciation for the level of complexity that
arises in quantum open systems, even when the system,environment and the dynamics are as simple as we
laid them out to be. The spontaneous emission model is virtually as simple as a quantum open system can
get without becoming trivial.

TrE([(Gk(t)bkσ+ +G∗k(t)b†kσ−), [(Gk(t1)bkσ+ +G∗k(t1)b†kσ−), ρS(t1)⊗ ρE(0)]]) =

= TrE(Gk(t)Gk(t1)b2kσ
2
+ρS(t1)⊗ ρE(0))− TrE(Gk(t)Gk(t1)bkσ+ρS(t1)⊗ ρE(0)bkσ+)

−TrE(Gk(t)Gk(t1)bkσ+ρS(t1)⊗ ρE(0)bkσ+) + TrE(Gk(t)Gk(t1)ρS(t1)⊗ ρE(0)b2kσ
2
+)

+TrE(Gk(t)G∗k(t1)bkb
†
kσ+σ−ρS(t1)⊗ ρE(0))− TrE(Gk(t)G∗k(t1)b†kσ−ρS(t1)⊗ ρE(0)bkσ+)
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−TrE(Gk(t)G∗k(t1)bkσ+ρS(t1)⊗ ρE(0)b†kσ−) + TrE(Gk(t)G∗k(t1)ρS(t1)⊗ ρE(0)b†bkσ−σ+)

+TrE(G∗k(t)Gk(t1)b†kbkσ−σ+ρS(t1)⊗ ρE(0))− TrE(G∗k(t)Gk(t1)bkσ+ρS(t1)⊗ ρE(0)b†kσ−)

−TrE(G∗k(t)Gk(t1)b†kσ−ρS(t1)⊗ ρE(0)bkσ+) + TrE(Gk(t)G∗k(t1)ρS(t1)⊗ ρE(0)bkb
†σ+σ−)

+TrE(G∗k(t)G∗k(t1)(b†)2kσ
2
−ρS(t1)⊗ ρE(0))− TrE(G∗k(t)G∗k(t1)b†kσ−ρS(t1)⊗ ρE(0)b†kσ−)

−TrE(G∗k(t)G∗k(t1)(bkσ+ρS(t1)⊗ ρE(0)b†kσ−)− TrE(G∗k(t)G∗k(t1)ρS(t1)⊗ ρE(0)bkb
†
kσ+σ−).

Collecting the nonzero terms in the final expression one gets

∂tρS(t) = −
∫ t

0

dt1
∑
k

ak(t)a∗k(t1)(σ+σ−ρS(t1)− σ−ρS(t1)σ+) + h.c. (36)

• h.c. is the Hermitian conjugate of the neighboring summand.

The term
∑
k ak(t)a∗k(t1) and its conjugate can be approximated by an integral due to our assumptions that

the bath is large relative to our system and the system interacts equally with each of the virtually continuous
degrees of freedom of the environment. Recalling how ak(t) was defined, our sum is approximated by

Γ(t− t1) =

∫ ∞
0

dωP (ω)g2(ω)ei(ωa−ω)(t−t1).

Here P (ω) is the density of the field modes as a function of frequency, and in practice the term P (ω)g2(ω) is
smoothly varying in the vicinity of ωa and therefore our integrand Γ(t− t1)is sharply peaked at t = t1, this
is an adaption of the version Wise et al man give in their book ??on quantum control . This means that we
can approximate the term ρS(t1) by ρS(t).The importance of this approximation just made here can not be
overstated, this is what we have been working towards, it means that the integral term in our equation is now
local in time. This is the Markov approximation in action.

∂tρS(t) = −(σ+σ−ρS(t)− σ−ρS(t)σ+)

∫ t

−∞
dt1Γ(t− t1) + h.c.. (37)

We changed the lower limit of integration to −∞ since the integrand Γ(t − t1) is negligible for values of
t1 varying significantly from t.I will make the substitution ∆ωa − iγ2 = −i

∫∞
0
dt1Γ(t − t1) where ∆ωa

is the frequency shift of the two level atom and γ is the radioactive decay of the atom [6]. With the above
substitution and the definition D[σ−]ρ = σ−ρσ+ − 1

2 (σ+σ−ρ+ ρσ+σ−) we can do one last modification to
our differential equation. i.e.

∂tρS(t) =
−i
2

∆ωa[σz, ρS(t)] + γD[σ−]ρS(t). (38)

We may now revert back from the interaction picture.

∂tρS(t) =
−i
2

(ωa + ∆ωa)[σz, ρS(t)] + γD[σ−]ρS(t). (39)

An equation of this from is called a Born −Markov Master equation,Lindblad Master equation and/or an
equation of Lindblad form.

2.1.1 Solution

The most general form a the state matrix ρS(t) can take is

ρS(t) =
1

2
[I2 + x(t)σx + y(t)σy + z(t)σz] (40)

Coherences are present via the σy and σx terms, we will therefore monitor decoherence via x(t) and y(t).
The scalar functions x(t), y(t), and z(t) are computed in the following way.

• ∂
∂tz(t) = Tr{σz ∂∂tρS(t)}

10



• ∂
∂ty(t) = Tr{σy ∂∂tρS(t)}

• ∂
∂tx(t) = Tr{σx ∂∂tρS(t)}

Using the Lindblad Master equation to substitute for ∂
∂tρS(t) these equations become

• ∂
∂tz(t) = −γ(z(t) + 1)

• ∂
∂ty(t) = (∆ωa)x(t)− γ

2 y(t)

• ∂
∂tx(t) = −(∆ωa)y(t)− γ

2x(t)

with solutions

• z(t) = 2e−γt − 1

• y(t) = −e−
γt
2 sin((ωa + ∆ωa)t)

• x(t) = e−
γt
2 sin((ωa + ∆ωa)t).

The solution to the Lindblad Master equation in the spontaneous emission case is therefore the following
state matrix.

ρS(t)→

[
e−γt e−

γt
2 sin((ωa + ∆a)t) (1+i)

2

e−
γt
2 sin((ωa + ∆a)t) (1−i)

2 1− e−γt

]
(41)

Notice the exponential decay! This was to be expected! Also, notice the decoherence, i.e. the decay of the
off-diagonal entries.

We have solved the Lindblad Master equation for a Two-Level atom in the vacuum. Now, we did this for
a low dimensional quantum system. As the dimension N grows the number of coupled differential equations
grows as N2 − 1. For spin systems/ two-level systems the dimensionality N = 2n where n is the number
of spins. This is a computational feat that is formidable at best. Methods that steer clear of the systems of
differential equations approach are therefore of great interest. One such method is the so called Quantump-
Jump Monte-Carlo method which is related to the so called unravellings in the theory of Quantum Stochastic
Calculus. In what is to come we will briefly comment on Quantum unravellings and then move on to the
Quantum Jump approach. For cases where the Lindbladian requires numerical methods to solve we may turn
to the so called unravelling techniques which allow us to attain approximate solutions to the Lindblad master
equation for a reduced cost.

3 The Stochastic Schrödinger equation and Quantum Jumps
Approximate solutions to the Lindblad master eqation 22 may be obtained by solving a pertinent stochas-
tic schrödinger equation. Deducing a stochastic schrödinger equation whose solutions are solutions to the
relevant master equations is a process called unravelling in the literature and it is beyond the scope of this
paper, for a great synopsis on the subject one may take a look at the paper by Petruccione and Moodley [12]
One such unravelling is the so called Quantum Jumps unravelling [13] which is described by the stochastic
schrödinger equation, let us consider the case with only one jump operator for simplicity.

|dψ̄〉 = −iHeff |ψ̄〉dt+
1

2
〈C†C〉|ψ̄〉dt+

(
C√
〈C†C〉

− 1

)
|ψ̄〉dN, (42)

above |ψ̄〉 := |ψ〉/
√
〈ψ|ψ〉 and Heff = HS − i

2C
†C, in general Heff = HS − i

2

∑
n C
†
nCn. This

is a stochastic differential equation where dN is a stochastic variable which is 0 except at random times
(corresponding to the jumps) when it becomes 1. It has statistics dNdN = dN , M|ψ〉(dN) = γ〈C†C〉
where M|ψ〉 denotes the ensemble average over all trajectories which are in the state |ψ〉 at the time t. Note
that this approach allows us to work with the state vectors as opposed to the corresponding density operators.
This reduces complexity since the dimension of a density operator is the square of the dimension of its
corresponding state vector. It turns out that there are an infinitum of ways to unravel the Lindblad master
equation but we will stick to this one. This unravelling and the Monte Carlo wave-function are actually
equivalent but often presented as stand alone approaches in the literature.
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3.1 The Monte Carlo wave-function
Explicit invocation of the stochastic Schrödinger equation need not be be made when utilizing the Quantum

Jumps approach to approximate the solutions to the Lindblad master equation. This method is denominated
the Monte Carlo wave-function and the schematic is the following [14].

The state-vector initial condition |ψ(0)〉 of a single trajectory is taken from an ensemble that appropriately
samples the initial density operator ρS(0)(in general, we need many state vectors from this ensemble and
many trajectories for each state-vector initial condition). The Monte Carlo wave function method evolves
|ψ(t)〉 to |ψ(t+ δt)〉 as follows

1. To begin, the state vector is evolved according to the non-unitary dynamics afforded by the operator
Heff as described by the differential equation

i∂t|ψ〉 = Heff |ψ〉.

Neglecting terms of order δt2 and higher |ψ(t + δt)〉 ≈ (1 − iHeffδt)|ψ(t)〉. Owing to the fact that
Heff is not Hermitian, the evolved operator |ψ(t + δt)〉 is not normalized even if |ψ(t)〉 was to begin
with. The normalization term reads

〈ψ(t+ δt)|ψ(t+ δt)〉 ≈ 1− δp

where δp := δti〈ψ(t)|Heff − H†eff |ψ(t)〉 where |ψ(t)〉 is normalized. Recall that Heff := HS −
i
2

∑
n C
†
nCnforthegeneralcase.which means thatHeff−H†eff = −2 i2

∑
n C
†
nCn = −i

∑
n C
†
nCn.

δp is therefore
δp = δt〈ψ(t)|

∑
n

C†nCn|ψ(t)〉 ≥ 0.

Notice that the time step δtmust be small enough so that this first-order calculation be valid. Finding an
appropriate δt is often the main hurdle to overcome in order to find faithful approximations to solutions
of the Lindblad master equation in question. In some papers [14] it is required that δp << 1. This
requirement is needed in order to insure that the probability of two jumps occurring in the same time
step be negligible. This is a reasonable assumption for open systems where the system interacts weakly
with its environment.

2. Here is the Monte Carlo aspect of the algorithm. A possible jump with total probability δp. Choose a
random number α in [0, 1], and if δp < α no jump occurs ( this should be the case most of the time due
to weak interaction) and the new normalized state at t+ δt is now

|ψ(t+ δt)〉

∣∣∣∣∣
nojump

:=
(1− iHeffδt)√

1− δp
|ψ(t)〉.

Now, if α < δp, a jump occurs, and the new normalized state vector is chosen from among the different
state vectors Cm|ψ(t)〉 with probability distribution πm = δpm

δp where δpm := δt〈ψ(t)|C†mCm|ψ(t)〉:

|ψ(t+ δt)〉

∣∣∣∣∣
mthjump

=

√
δtCm√
δpm

|ψ(t)〉.

The steps above can be shown to produce the Lindblad master equation to first order in δt if we average the
evolved state of one trajectory. The algorithm above applies to state vectors but the corresponding density
operators are obtained by taking the outer products of our state vectors with themselves. An average trajectory
(of δt evolution) of a density operator is therefore computed as

ρsys(t+δt) = |ψ(t+δt)〉〈ψ(t+δt)| = (1−δp)|ψ(t+δt)〉〈ψ(t+δt)|

∣∣∣∣∣
nojump

+
∑
m

δm|ψ(t+δt)〉〈ψ(t+δt)|

∣∣∣∣∣
mthjump

=

= (1− iδtHeff )|ψ(t)〉〈ψ(t)|(1 +
iδtH†eff

~
) + δt

∑
n

Cn|ψ(t)〉〈ψ(t)|C†n =
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|ψ(t)〉〈ψ(t)|+ δt
(
− iHeff |ψ(t)〉〈ψ(t)|+ |ψ(t)〉〈ψ(t)|iH†eff

)
+ δt

∑
n

Cn|ψ(t)〉〈ψ(t)|C†n +O(δt2) ≈

ρsys(t) + δt
(
− iHeffρsys(t) + iρsys(t)H

†
eff

)
+ δt

∑
n

Cnρsys(t)C
†
n =

ρsys(t) + δt
(
− i
[
H, ρsys(t)

]
− 1

2

∑
n

C†nCnρsys(t)−
1

2

∑
n

ρsys(t)C
†
nCn

)
+ δt

∑
n

Cnρsys(t)C
†
n

This can be conclusively written as

ρsys(t+ δt)− ρsys(t)
δt

≈ −i
[
H, ρsys(t)

]
− 1

2

∑
n

C†nCnρsys(t)−
1

2

∑
n

ρsys(t)C
†
nCn +

∑
n

Cnρsys(t)C
†
n

which is equivalent to the Lindblad master equation 22 in the limit δt→ 0.
In the following section we will use the Quantum Jump technique in order to analyze the statistical

behavior of the observable σz for a two level system in a the vacuum.

4 Monte Carlo wave function simulations
Let us now return to the master equation deduced in section 2 for a two level system in the vacuum. This

master equation had the form

∂tρS(t) =
−i
2

(ωa + ∆ωa)[σz, ρS(t)] + γD[σ−]ρS(t). (43)

where
D[σ−]ρ = σ−ρσ+ −

1

2
(σ+σ−ρ+ ρσ+σ−).

We will fix δt = 0.001, γ = 0.1 = ωa. We next implement the Quantum Jump Monte-Carlo program with
use of the programming language R for a varying number of trajectories N ∈ {1, 10, 100, 1000}. My results
are in the image block below. Notice the decay from spin up 〈σz〉 = 1 to spin down 〈σz〉 = −1. We
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finally conclude this report by trying our hand at a model akin to the single two level system in a bath, namely
a system of two coupled two level atoms in the vacuum. The relevant Master equation is quite similar to that
of the single two level system in the vacuum.

∂tρS(t) =
−i
2

(ωa1 + ∆ωa1)[σz1, ρS(t)] +
[
Jxσx ⊗ σx + Jyσy ⊗y +Jzσzσz, ρS(t)

]
+ (44)

−i
2

(ωa2 + ∆ωa2)[σz2, ρS(t)] + γ

{
Σ−ρS(t)Σ+ −

1

2
(Σ+Σ−ρS(t) + ρS(t)Σ+Σ−)

}
. (45)

Where

• σz1 = σz ⊗ I2

• σz2 = I2 ⊗ σz

• Σ− = σ− ⊗ I2 + I2 ⊗ σ−

• I2 is the 2-D identity operator.

Fixing the relevant parameters as follows

• σa1 = σa2 = γ = 0.1

• Jx = Jy = Jz = 0.2

• δt = 0.001.

We will vary the trajectory parameter in the code as follows N ∈ {1, 10, 100, 500} just like we did with
the single spin simulation above. Instead of monitoring the observable σz we will monitor σz1 + σz2 in this
case. Note that the y-axis labels used for the graphs below are the same that were used for the graphs above.
However, in the bottom case <sigmaZ> := σz1 + σz2. We have kept the title the same, i.e. Expected value of
sigmaz but this should be understood here as total spin which is represented by σz1 + σz2. We can not go as
high as one thousand trajectories because for this to be the case I would have to sacrifice the smallness of δt
which would yield poor results or I would have to constrain myself to a smaller time domain which will not
allow me to truly appreciate the dynamics of the total spin observable. Notice the decay from both two level
systems spin up 〈σz1 + σz2〉 = 2 to both two level systems spin down 〈σz1 + σz2〉 = −2.
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5 conclusion
The Quantum Jumps for the single Two-Level and double Two-Level system were successful in the sense
that they reproduced the expected exponential decay for the respective total spin observables. However, more
analysis regarding the optimal δt to be used should be taken on since this was a great hurdle when selecting
parameters for my simulations. The complexity of the program I have written grows with respect to the size
of my time domain partitioning and number of trajectories since I use an N by cardinality (Timedomain)
matrix in my code in order to implement the Quantum Jump method. Perhaps a better way, one avoiding
matrices may be adopted.
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