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Abstract

We develop tools apt for the quantitative study of the dynamical emergence of Spectral

Broadcast Structures (SBS) due to environmental monitoring. In the past, efforts have been

made to bound the proximity of an arbitrary state undergoing non-unitary evolution to the

nearest SBS state (in the trace distance sense). This dissertation presents the first of such

bounds which has been substantiated as well as provides sufficient conditions under which

a broad family of multipartite states converge to SBS states asymptotically in time. We

also develop an SBS theory for continuous variables (SBSCV); i.e. the dynamics will now

be generated by self-adjoint operators with purely continuous spectrum. We create a theory

for SBSCV that parallels that of SBS and develop tools for its quantitative study.

9
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Introduction

The emergence of the classical world, with its objective properties, from the quantum

world has been a conundrum since the genesis of quantum theory [32][18][12]. If quantum

mechanics is indeed a more fundamental theory of nature than classical mechanics (New-

tonian mechanics), then why can we not see matter behaving quantumly in our everyday

lives? The superposition principle says that states of matter may in a sense be delocalized

[6] [70]. But we never see such delocalized states of matter in our quotidian life. So what

happens to the quantumness of matter? Where does it all go? More importantly, why is the

world around us classically objective (i.e. when multiple observers measure the same system

they observe the same state of said system) in spite of it having to obey the laws of quan-

tum mechanics which would appear highly non-objective? In this dissertation we study a

relatively novel theory, known as the theory of Spectrum Broadcast Structures (SBS) theory

[39] [40] [41] [54], developed for the purpose of taking on such questions. The theory of SBS

being rather young (about 10 years old), it has yet to reach mathematical maturity. The

bulk of the original work presented in this dissertation will consist of tools/techniques for

the quantitative study of these so-called SBS states and their dynamical properties. We will

also generalize the existing SBS theory to a new theory that includes states and dynamics

hitherto not studied with mathematical rigor in the literature, namely the theory of SBS for

continuous variables.

This dissertation contains four main parts. The first consists of a detailed synopsis of

11
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key concepts and tools from the theories of Quantum Open Systems, Quantum Information

Theory and Operator Theory that will be essential for the development of the main results

of this work. Chapters 1 and 2 will be consecrated to the introduction of all of these con-

cepts and tools. In Chapter 1 we introduce the concepts of quantum open systems, quantum

information theory, and operator Theory; focusing on Quantum Maps, distance measures,

and relevant operator inequalities in Chapter 2.

The second part (Chapter 3) introduces the optimization problem of Quantum State

Discrimination (QSD) [22][23][71][62][26][25][28][66], an active field of research within the

theory of quantum information whose focus is estimating the probability of measuring the

correct state of a quantum system when said system is in a mixed state. This section will

serve us in future chapters since techniques and concepts from QSD will play an important

role in Chapters 4 and 5. In Chapter 3 we introduce some of the main results of QSD for

countable mixtures and introduce the concept of QSD for uncountable mixtures. We study

dynamically evolving mixtures, both uncountable and countable, and deduce novel results

regarding their QSD problems in the asymptotic regime (large-time dynamics); see Propo-

sitions 3.5.1 and 3.7.1, Theorem 3.6.2, and Corollary3.6.1.

In Chapter 4 (Part 3 of this thesis) we focus on the theory of Spectrum Broadcast Struc-

tures (SBS) [39] [40] [41] [54]. Informally, a SBS state is a special type of quantum state

that exhibits classical-objectivity properties. As mentioned, these states are used to study

the emergence of classicality from the quantum, a theme that is ubiquitous in the field of

quantum-to-classical transitions [12]. Interacting systems such as a multipartite network of

a system and multiple observers (observers of the system) will always exhibit objectivity in

the classical regime; i.e. all observers will find the system to be in the same state. One would

expect an analog of such a notion of objectivity to exist in the quantum regime. In Chapter

4 it will be argued that in order to prove the latter is indeed the case, quantum analogs of
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the networks hitherto discussed (i.e. one system with multiple observers.) will necessarily

have to converge dynamically to an SBS state (4.1.2. We build tools apt for studying the

dynamical convergence of certain multipartite quantum states to an SBS state (Theorems

4.2.2 and (4.4.1)) and discuss sufficient conditions for a broad family of multi-partite states

to converge to an SBS state (see Corollary 4.8.1)

Chapter 5 constitutes the fourth and final part of this dissertation. In this chapter, we

generalize the theory of SBS to include the case where the systems in question are taken to

live in an infinite dimensional Hilbert space, and the dynamics are assumed to be generated

by self-adjoint operators with continuous spectrum (what we will call the Spectrum Broad

Cast Structures of continuous variables theory (SBSCV)). Such cases are not supported by

the already existent theory of SBS which shall be discussed in Chapter 4 and the novel

results presented therein. The leap in difficulty from SBS to SBSCV is considerable; we,

therefore, consecrate a lot of the space in Chapter 5 to the formidable task of creating the

tools necessary for the proper analysis of the emergence of SBSCV states (see 5.4.1 5.3.1

5.3.1).
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Chapter 1

Open Quantum Systems

1.1 Closed vs Open

The central focus of introductory quantum mechanics is the study of closed quantum
systems. Although the closedness of any physical system is an idealization, and in reality no
physical is ever closed except perhaps for the entire universe [1], assuming closedness may
nevertheless lead to useful models that shed light on fundamental properties of nature. The
Energy spectrum of the hydrogen atom, for example, may be deduced by considering the hy-
drogen to be a closed system [6]. The equation of motion governing closed quantum systems
is the Schrödinger equation iℏ∂t

∣∣∣ψ〉 = Ĥ
∣∣∣ψ〉, to be discussed in detail below. Schrödinger’s

equation (SE) generates unitary evolution, forgoing any description of dissipative and deco-
herence effects [12]; processes where energy, information, and other agents of "quantumness"
are not preserved. Decoherence and dissipation are nevertheless inevitable! A model that
does not account for such a phenomenon can therefore not be complete.

One of the conundrums out-flowing from the modeling of quantum scale phenomena
with the SE is the seeming non-physical nature of its solutions, in the sense that linear
combinations of measurable properties of an observable are viable solutions to SE. This is of
course the superposition principle of quantum mechanics [6], something whose interpretation
foments contention amongst scientists till this day. The superposition principle [6] [10] is ar-
guably the needy-greedy when one discusses quantum mechanical phenomenon, and indeed
this is what is alluded to when the term "quantumness" is used in this work. In everyday
macroscale physical experiences, one does not carry out measurements that result in more
than one outcome, hence the dilemma.

The non-local description of nature emanating from early quantum theory was not met
with a favorable reception. In fact, quite the opposite, the immediate impulse of some of
the great physicists of the 20th century was to navigate around this apparent inconstancy
of quantum theory and our apparent reality. Consensus was more or less met but there
was one question that still left the physics community puzzled. This was the question of
measurement, i.e. if quantum theory is correct then how is it the case that measurements
always lead to definite outcomes? To answer this question Niels Bohr annexed a support-

15
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ing theory to the already-existent quantum theory. The idea consisted of a model where
upon being measured, a quantum system evolving unitarily via SE would instantaneously
collapse to a definite eigenstate of the observable being measured. This collapse was assumed
to occur with some probability distribution governing the "collapse"[9]. The latter take on
quantum theory became known as the Copenhagen interpretation [7]. Although various
aspects of the Copenhagen interpretation are criticizable, we will stop at one, namely the
instantaneous aspect of the collapse which is assumed. This is at odds with the nature of
the time-continuous world we live in, there must surely exist some time scale within which
these "collapses" take place, leading one to guess that the Copenhagen school of thought has
missed something fundamental. It is now understood that "collapse" or loss of quantumness,
is not a phenomenon that occurs instantaneously. This loss of quantumness is the study of
the theory of decoherence [12] [18] and decoherence time scales which vary from system to
system [18] (pg 66) may be estimated via considering the more realistic setting where the
system in question, and the associated environment, are both treated as interacting quantum
systems.

By considering a larger closed quantum system, which includes both the system of interest
and its environment, one may use SE as a starting point, and later compute the reduced
dynamics of the system. Ideally, we hope to obtain the unitary evolution for the total
dynamics and deduce the local dynamics of the system. However, as will be seen in what is to
come, this is no easy venture. In this chapter, we will give an overview of the mathematical
theory for closed quantum systems, introduce the theory of open quantum systems, and
discuss applications to canonical decoherence models of decoherence [18] [12].

1.2 Unitary Evolution For Finite Dimensional Systems

In quantum mechanics for closed quantum systems one is tasked with solving SE; we will
express it here with units of ℏ = 1.

i∂t
∣∣∣ψt〉 = Ĥ|ψt⟩ (ℏ = 1) (1.1)

where the state
∣∣∣ψt〉 is a vector in some Hilbert space, call it ĤS, and Ĥ is a self-adjoint

operator, which we will call the Hamiltonian, acting in HS. For the cases where dim{HS} <
∞,

∣∣∣ψt〉 will represent a column vector, making
〈
ψt
∣∣∣ :=

∣∣∣ψt〉†
a row vector. The solution to

equation 1.1 is
e−itĤ

∣∣∣ψ0
〉

(1.2)

where
∣∣∣ψ0
〉

∈ HS (
〈
ψ0

∣∣∣ψ0
〉

= 1) is the initial state of the system. Invoking Stone’s theorem
[3] we know that the operator e−itĤ is a strongly continuous one-parameter semigroup acting
in the Hilbert space HS, with t being the parameter, and hence

〈
ψt
∣∣∣ψt〉 = 1 (∀t). However,

the story does not end there. We would like to understand the effect of the unitary operator
Ût := e−itĤ upon acting on

∣∣∣ψ0
〉
. One approach is to simply use the Taylor expansion of the
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exponential function ex.
e−itĤ =

∞∑
n=0

(−it)n
n! Ĥn (1.3)

However, this will require one to take arbitrarily large powers of the matrix Ĥ. Inevitably,
there will be some approximations involved since one can not take an infinite sum, and tak-
ing greater powers of Ĥ becomes ever more costly. There are nevertheless cases where this
path is fruitful; one of them being when the operator norm ∥tĤ∥ is small. In such a case
one can get away with truncating the sum and keeping a minimal amount of terms. Or, the
Hamiltonian could have small dimensions, in which case computing powers are not too costly.

There is one case where the sum (1.3) is trivial to compute. This is when the matrix Ĥ
is diagonal. Assume that Ĥ is diagonal with respect to the orthonormal basis

{∣∣∣ϕn〉}
n
, then

Ĥ =
∑
n

λn
∣∣∣ϕn〉〈ϕn∣∣∣ (1.4)

and therefore

e−itĤ =
∞∑
n=0

(−it)n
n! Ĥn =

∞∑
n=0

(−it)n
n!

(∑
m

λm
∣∣∣ϕm〉〈ϕm∣∣∣

)n
= (1.5)

∞∑
n=0

(−it)n
n!

∑
m

λnm
∣∣∣ϕm〉〈ϕm∣∣∣ =

∑
m

∞∑
n=0

(−it)n
n! λnm

∣∣∣ϕm〉〈ϕm∣∣∣ = (1.6)

∞∑
n=0

(−it)n
n!

∑
m

λnm
∣∣∣ϕm〉〈ϕm∣∣∣ =

∑
m

e−itλm

∣∣∣ϕm〉〈ϕm∣∣∣. (1.7)

Assuming that the operator Ĥ is full rank, its eigenspace
{∣∣∣ϕn〉}

n
will span all of HS; hence

we need only decompose any arbitrary vector
∣∣∣ψ0
〉

in HS with respect to the eigenbasis of
Ĥ and then calculate exactly the evolution of

∣∣∣ψ0
〉
. i.e.

Ût

∣∣∣ψ0
〉

= eitĤ
∑
n

αn
∣∣∣ϕn〉 =

∑
n

αne
itλn

∣∣∣ϕn〉, {αk :=
〈
ϕk
∣∣∣ψ0
〉
}k (1.8)

It is a basic result from linear algebra that any normal matrix Ĥ (Ĥ†Ĥ = ĤĤ†) is
diagonalizable [9] (section 2.1.7). Owing to the fact that self-adjoint matrices are also normal,
we conclude that any self-adjoint matrix Ĥ is also diagonalizable. Obtaining a diagonal
representation, however, remains a challenging problem. In this case we must solve the
following vector equation.

Ĥ
∣∣∣ϕ〉 = λ

∣∣∣ϕ〉 (1.9)

which is only possible if the matrix Ĥ − λI is singular. From basic linear algebra, we know
that ensuring the matrix Ĥ − λI to be singular is equivalent to finding the roots of the
characteristic polynomial

det
(

Ĥ − λI
)

= 0. (1.10)
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The hurdles are now that of computing a determinant, finding the roots of the resulting poly-
nomial in order to obtain the eigenvalues, and finding the associated eigenvectors. These
three processes are well understood theoretically; computationally they are costly and even
intractable for large enough dim{HS}. Although the equation (1.10) in general poses an ill-
conditioned problem there are many algorithmic techniques designed for the computational
estimation of the solutions to this equation [55].

We have of course omitted discussions on the slew of eigenvalue approximation techniques
that exist out there. Perhaps the most popular one amongst physicists being time-dependent
perturbation theory. Nevertheless, the discussion herein, in a sense, summarizes the math-
ematical aspects of finite dimensional quantum theory for closed quantum systems. At a
mathematical level, if we can diagonalize the Hamiltonian of the system we are interested
in, then we know just about everything. Of course, anyone who has read more than the
introductory chapters to a first-year quantum mechanics course knows that even the sim-
plest non-trivial Hilbert space C2, simple as it may be, affords a framework that supports
volumes of interesting physics[10] [6] [13] [9] [8]. Two-level systems are the basis of quantum
information and quantum computation theory after all[9], and two-level systems are just the
tip of the iceberg!

1.3 Unitary Evolution For Infinite Dimensional Sys-
tems.

Let us now pass to the case where dim{HS} = ∞. Unless mentioned otherwise, we will
constrain ourselves to the Hilbert space L2

(
R
)

(square-integrable functions over the reals)
for this section. In quantum theory, observables are described with self-adjoint operators.
The expectation value of some arbitrary observable Ĥ for some system in the state

∣∣∣ψ〉
being

〈
Ĥ
〉
ψ

:=
〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 :=

〈
ψ, Ĥψ

〉
;
∣∣∣ψ〉 now represent square-integral functions ψ(x) and〈

ψ
∣∣∣ their complex conjugate ψ∗(x). Physically speaking, if the state of the system we are

studying lives in L2
(
R
)
, we are only going to concern ourselves with states

∣∣∣ψ〉 that yield
defined expectation values for all observables of the system. For the case of some observable
Ĥ acting L2

(
R
)
, we hence know that

〈
Ĥ
〉
ψ

:=
∫
R
ψ∗(x)Ĥψ(x)dx (1.11)

is a well-defined quantity. If the operator Ĥ is bounded then we have nothing to worry
about since

〈
Ĥ
〉
ψ

≤
∥∥∥Ĥ∥∥∥ < ∞, which follows from the result sup∥x∥=1∥⟨x, Âx⟩| = ∥Â∥, for

a bounded and self-adjoint Â, consult [21] chapter 8. For the case where the observable in
question, Ĥ, is an unbounded operator the latter will not be the case for all

∣∣∣ψ〉. However, the
well-deifinedness (1.11) can be guaranteed by restricting ourselves to

∣∣∣ψ〉 satisfying Ĥ
∣∣∣ψ〉 ∈

L2
(
R
)
, i.e.

∫
R

∣∣∣Ĥψ(x)
∣∣∣2dx < ∞. This is immediately clear by making use of the Cauchy-
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Schwarz inequality;
∫
R
ψ∗(x)Ĥψ(x)dx ≤

√∫
R

|ψ∗(x)|2dx
√∫

R
|Ĥψ(x)|2dx =

√∫
R

|Ĥψ(x)|2dx. (1.12)

Let us call the subset of
∣∣∣ψ〉 ∈ L2

(
R
)

satisfying Ĥ
∣∣∣ψ〉 ∈ L2

(
R
)

the domain of Ĥ, and
name it D

(
Ĥ
)

⊂ L2
(
R
)
. In quantum theory, we are only concerned with Hamiltonians Ĥ

having a domain D
(
Ĥ
)

which is dense in the Hilbert space of interest; i.e. any state in
the Hilbert space of interest may be approximated by elements of D

(
Ĥ
)
. This is a point in

which the mathematics for infinite-dimensional quantum systems diverges from that of finite-
dimensional systems. For physical systems living in a finite-dimensional Hilbert space, one
need not worry about domain issues; the inner product (1.12) in such a case will simply be
a finite sum of finite values and will therefore be well-defined regardless of the operator and
vectors involved. Furthermore the domain of some observable Â in the finite-dimensional
case may always be treated as the entire Hilbert of interest.

Any operator Ĥ acting in L2
(
R
)

will have a domain D
(
Ĥ
)

and its adjoint Ĥ† will
have its own corresponding domain D

(
Ĥ†
)
, D

(
Ĥ†
)

⊂ L2
(
R
)

and D
(
Ĥ
)

⊂ L2
(
R
)
. For an

operator Ĥ in such a setting to be self-adjoint it is a necessary and sufficient condition that
D
(
Ĥ
)

= D
(
Ĥ†
)
. Drawing a comparison with the finite-dimensional case, notice that for

the latter one need only check that the matrix in question is equal to its complex transpose.
Even at the level of identifying whether or not an operator Ĥ, which we would like to use for
the modeling of some observable, is self-adjoint, one is met with a challenge far greater than
just simple matrix manipulation. In the non-relativistic quantum theory of closed quantum
systems, the operators of interest have the following structure

Ĥ = Ĥ0 + V (X̂) (1.13)

where Ĥ0 := −∑
k

1
2mk

∂2
xk

and X̂ := (x̂1, ..., x̂k, ..). Testing whether or not D
(
Ĥ
)

= D
(
Ĥ†
)

is of course not a simple matter, but thanks to theorems such as the Kato-Rellich [4] the
self-adjointness of operators of the form (1.13) is fairly understood. When an operator of
the form (1.13) is self-adjoint, it is referred to as a Schrödinger operator [5].

Let us now look at a concrete example. We will consider what is perhaps the most
famous observables in quantum theory, namely P̂ := −i∂x (the momentum operator). We
remind the reader that the Hilbert space of interest shall be L2

(
R
)
. In such a case it is easy

to see that that there exists
∣∣∣ψ〉 ∈ L2

(
R
)

such that −i∂xψ(x) /∈ L2
(
R
)
. For example, let

ψ(x) = sin(ex)
1+x2 . This function is square-integrable since it is dominated by an L2

(
R
)

function
1

1+x2 , i.e. |ψ(x)| ≤ 1
1+x2 ∀x ∈ R (the argument follows from application of the Dominated

Convergence Theorem [2]). However, consider the derivative of ψ(x).

∂xψ(x) = (1 + x2) cos(ex)ex − sin(ex)2x
(1 + x2)2 . (1.14)
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For large x, |∂xψ(x)| ≈ ex

1+x2 ; a function which is clearly not in square-integrable. However,
D(P̂) is a dense subset of L2

(
R
)
, which means that any physically relevant function living

in L2(R) may be approximated by functions in the domain of P̂. This will allows us to make
sense of

〈
P̂
〉
ψ

for any physically relevant
∣∣∣ψ〉.

Given a Hamiltonian Ĥ acting in an infinite dimensional Hilbert space, Schrödinger’s
equation (1.1) again has the solution e−itĤ

∣∣∣ψ0
〉
, with

∣∣∣ψ0
〉

the initial state. This time how-
ever, the operator Ĥ has domain restrictions which may be transmitted to the operator e−itĤ.
Deffering nuances regarding domains to the great expositions in [4] [3], the generalization of
Stone’s theorem tells us that the operator e−itĤ will again be a unitary operator governing
the dynamics of any initial state

∣∣∣ψ0
〉
. Here we are once again faced with the challenge of

figuring out how the operator e−itĤ acts on an arbitrary state
∣∣∣ψ0
〉
. Once again, one might

be tempted to expand the operator e−itĤ using the Taylor series of ex. If we were to do
this, even for a simple case of the Schrödinger operator (1.13), say Ĥ = − 1

2m∂
2
x + V

(
X̂
)
,

we would quickly encounter non-linear terms such as ∂2
xV
(
X̂
)
ψ0(x). These non-linear terms

would grow in complexity and we would have to compute an indefinite amount of them.
Also, given that the operations involved are derivatives and multiplication by functions, we
would not be able to simply take various powers of the operators showing up in the series,
e.g.

{
∂2
x

}m{
V
(
X̂
)}n

, and store them in some computer program subroutine for computing
the effect on an arbitrary

∣∣∣ψ0
〉
. This is because the way differential operators act will be

intrinsically dependent on the vector they are acting on. We are worst off here than we were
in the finite-dimensional case. Unless t is very small and we can truncate the series, one
must take a different approach.

To make progress in the matter of making sense of e−itĤ
∣∣∣ψ0
〉

for the case at hand, we need
a notion that generalizes the concept of an eigenvalue and eigenvector. This is the notion
of the spectrum of an operator denoted Spec

{
Ĥ
}

for some operator Ĥ[3] [4] [16] [8]. Given
that we are solely interested in self-adjoint operators, we will be narrowing our attention to
the spectral theory of self-adjoint operators. We warn the reader that our treatment will be
a non-rigorous one. There are four main kinds of infinite-dimensional self-adjoint operators
that we shall be working with in this thesis. Namely, those that are trace class, Hilbert-
Schmidt, bounded and unbounded operators. Given an infinite-dimensional Hilbert space
H we will denote the corresponding spaces of bounded, trace class, and Hilbert-Schmidt
operators respectively as B

(
H
)
, S1

(
H
)

and S2
(
H
)
.

B
(
H
)

:=
{

Ĥ : H → H
∣∣∣∣ ∥Ĥ

∥∥∥∥ < ∞
}

(1.15)

S2
(
H
)

:=
{

Ĥ : H → H
∣∣∣∣ √Tr{Ĥ†Ĥ

}
< ∞

}
(1.16)

S1
(
H
)

:=
{

Ĥ : H → H
∣∣∣∣ Tr{√Ĥ†Ĥ

}
< ∞

}
(1.17)
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It is useful to note that

S1
(
H
)

⊂ S2
(
H
)

⊂ B
(
H
)

⊂ F
(
H
)

(1.18)

where F
(
H
)

are the finite rank matrices acting in H . Above, the map Tr{} is the trace
of an operator, which is equivalent to the sum of the eigenvalues of the operator being
traced[16]. There are two things that the attentive reader might have noticed. The first one
is that there is no mention of the case for unbounded operators in the list above. This is
because, unlike the sets B

(
H
)
,S2

(
H
)
,S1

(
H
)
, F
(
H
)

which are a special type of Banach
space called a Banach algebra [3], unbounded operators do not form an algebra, nor a linear
space, because each is defined in its own domain. The second thing one might have noticed is
that there was no mention of compact operators. Indeed the space of trace class operators as
well as the space of Hilbert-Schmidt operators are families of compact operators. However,
we will seldom be needing the concept of a compact operator in any greater generality than
that of trace class and Hilbert-Schmidt operators.

Heuristically speaking, finding the spectrum of some self-adjoint operator in the infinite-
dimensional case is paramount to finding objects

∣∣∣s〉 so that the relationship

Ĥ
∣∣∣s〉 = µs

∣∣∣s〉 (1.19)

holds. The problem here is that in this case the objects
∣∣∣s〉 may not be elements of the

Hilbert space in question. They may belong to the space of distributions for example. e.g.
consider the position operator X̂. This is an unbounded operator which may satisfy an
equation akin to (1.19). Namely,

X̂
∣∣∣x〉 = x

∣∣∣x〉 (1.20)

where the objects
∣∣∣x〉 are Dirac delta distributions written in ket form, we will refer to

such eigenstates as generalized eigenstates; one might correctly guess that Spec
{
X̂
}

= R
in this case. However, δ(x) is not in L2

(
Ω
)

for any Ω ⊆ R, so it would seem that this
relationship will not be too useful. However, taking the physicist approach, one may write
X̂ =

∫
R x
∣∣∣x〉〈x∣∣∣dx (Spectral Theorem [3]), and noticing that X̂n =

∫
R x

n
∣∣∣x〉〈x∣∣∣dx one may

therefore conclude that
e−itX̂ =

∫
R
e−itx

∣∣∣x〉〈x∣∣∣dx (1.21)

Now, for an arbitrary
∣∣∣ψ〉 ∈ L2

(
R
)

we may operate with (1.21) to get

e−itX̂
∣∣∣ψ〉 =

∫
R
e−itx

∣∣∣x〉〈x∣∣∣ψ〉dx =
∫
R
ψ(x)e−itx

∣∣∣x〉dx (1.22)

which is just the L2
(
R
)

function e−itxψ(x). But this is what we expected since e−itX̂ was
evidently a multiplication operator to begin with, and we can always write our sates as
functions of x ∈ Spec

{
X̂}. Another example from physics is the quantum simple harmonic
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oscillator (QSHO). Such a system is described by the Schrödinger operator

Ĥ := 1
2mP̂2 + mω2

2 X̂2. (1.23)

Although quite innocuous-looking, such an operator does not lend itself to exponentiation
right away. One needs to find its spectrum and associated spectral decomposition akin to
what we saw in (1.21). To do this we must solve an equation of the form

( 1
2mP̂2 + mω2

2 X̂2
)∣∣∣s〉 = µs

∣∣∣s〉. (1.24)

Forgetting for a moment that the solutions for (1.24) are amongst the most widely known in
quantum theory, one must admit that solving this is no more straightforward than solving
a differential equation. We were lucky in the case of X̂, where the spectrum was trivial
to find. For the general case, some clever methods must be devised; such is the case for
the QSHO. Via clever manipulation of ladder operators, it was discovered that Ĥ could
be diagonalized with Hermite functions, also known as number states,

∣∣∣n〉 with respective
eigenvalues ω(n+ 1

2) [6] [46] [10]. Where

〈
x
∣∣∣n〉 := 1√

2n n!

(
mω

π

)1/4
e− mωx2

2 Hn

(√
mωx

)
(Hermite Functions) (1.25)

Hn(x) = (−1)nex2 dn

dxn

(
e−x2) (Hermite Polynomials) (1.26)

With this in mind, we can now write

e
−it

(
1

2m
P̂2+ mω2

2 X̂2

)
=

∞∑
n=0

e−itω(n+ 1
2 )
∣∣∣n〉〈n∣∣∣. (1.27)

Let us compare (1.22) and (1.27). Both operators are diagonal in a sense, with respect
to their eigenvectors and generalized eigenvectors. We know exactly how (1.27) and (1.21)
act on any given vector in their respective domains. What differentiates these two operators
is the type of spectrum they have. While Spec

{
X̂
}

= R, we have Spec
{

1
2mP̂2 + mω2

2 X̂2
}

={
ω(n+ 1

2)
}∞

n=0
. The latter is a set of isolated points while the former, R, is a connected set!

These are cases of what is known as absolutely continuous and point spectrum respectively.
The spectrum of any self-adjoint operator may be characterized by three subcategories.
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Definition 1.3.1 (The Spectrum of an operator)

Let Â be an arbitrary self-adjoint operator acting over some Hilbert space H We
present the following definitions.

• point spectrum of Ĥ := Specpp
(
Ĥ
)

: The closure of the set of eigenvalues of
Ĥ, i.e. Specpp

(
Ĥ
)

is the set of eigenvalues of Ĥ (this is called the pure point
spectrum [3]).

• continuous spectrum of Ĥ := Specc
(
Ĥ
)

: Consists of all scalars, λ that are
not eigenvalues but make the range of Ĥ − λI a proper dense subset of H .

• residual spectrum of Ĥ := Specr
(
Ĥ
)
: Ĥ − λI is injective but does not have

dense range.

It is important to note that all of the sets defined in Definition 1.3.1 are disjoint. There
are indeed other ways to partition the spectrum of a self-adjoint operator but we will stop at
this for now, recommending to the interested reader the discussion in chapter 9 of [4] for yet
another partitioning of the spectrum using the notions of discrete and essential spectrums.
In Section 5.8 we will introduce yet another decomposition of the spectrum that will involve
two types of continuous spectrum, absolutely continuous and singular continuous.

Returning to the position operator X̂ and the QSHO 1
2mP̂2 + mω2

2 X̂2, note that for the
latter case the equation

( 1
2mP̂2 + mω2

2 X̂2
)
|n
〉

= ω(n+ 1
2
)∣∣∣n〉 (1.28)

is a bonafide solution to the eigenvalue problem since the states
∣∣∣n〉 are square-integrable

functions. Therefore it is clear that Specp
{

1
2mP̂2 + mω2

2 X̂2
}

is not empty. Furthermore, we
mentioned earlier that Spec

{
X̂
}

= R, and we also mentioned that Spec
{
X̂
}

= Specc
{
X̂
}
.

We will now shed light on these claims.

First consider the operator X̂ − λI, we will not prove that the range of said operator is
dense in L2

(
R
)

but this can be shown. Let us act on some arbitrary
∣∣∣ψ〉 in the Hilbert space

with X̂. The result is
(
x−λ

)
ψ(x). We can always choose a ψ(x) ∈ L2

(
R
)

so that for a given
ε > 0 we have ∥

(
x−λ

)
ψ(x)∥L2(R) ≤ ε, e.g. by letting ψ(x) ∈ {ϕn(x−λ)}n where ϕn(x−λ) is

a delta sequence centered at λ we may pick an appropriate n that satisfies the desired bound
ε > 0. This, of course, entails that

〈
ψ
∣∣∣(X̂ − λI

)∣∣∣ψ〉 may be made arbitrarily small, which
in turn implies that

〈
ψ|
(
X̂ − λI

)−1∣∣∣ψ〉 may be made arbitrarily large; making
(
X̂ − λI

)−1

an unbounded operator. i.e. even though X̂ has no eigenvalues, it behaves quite singular in
some sense. Now, using the fact that the range of X̂ − λI is dense in L2

(
R
)

this operator is
basically singular in the entire Hilbert space. Since the latter may be argued for any λ, we
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conclude that Specc
{
X̂
}

= R. Furthermore, since self-adjoint-operators have real spectrum
we conclude that Spec

{
X̂
}

= Specc
{
X̂
}
. Given that both the position operator and the

QSHO operator are unbounded operators, one might have suspected some similarities in the
nature of their respective spectrum; yet nothing is further from the truth! As our analysis
of the position and QSHO operators exemplifies, spectrum type need not be correlated to
operator type in general. For the general setting of unbounded and bounded operators, the
latter holds true; however, for the more specialized case of trace class and Hibert-Schmidth
operators, it turns out that they have only point spectra [3].

Much more can be said about the spectrum of self-adjoint operators and finding the
corresponding eigenvectors/ generalized eigenvectors but we will stop here for now. The
hope is that the reader gets a sense of the complexity invoked when working with operators
acting on infinite-dimensional Hilbert spaces. Not only is finding the spectrum of a given
Hamiltonian computationally more daunting in such a case, but in general, it is also very
difficult to categorize the spectrum such a Hamiltonian might have. There exist plenty of
results in the literature of Schrödinger operators whose aim is to categorize these sorts of
operators based on the spectral properties afforded by their potentials; the interested reader
on these matters may consult [4] for a phenomenal exposition on this subject.

1.3.1 The Density Operator
Let us take a step back and rewrite the Schrödinger equation in a form that will be more

practical for the study of open quantum systems. Starting with a Hilbert space H and some
Hamiltonian Ĥ acting in H , we have been interested in the equation (1.1) i∂t

∣∣∣ψt〉 = Ĥ
∣∣∣ψt〉,

the solution of which is e−itĤ
∣∣∣ψ0
〉

=
∣∣∣ψt〉. Let us now call ρ̂t :=

∣∣∣ψt〉〈ψt∣∣∣. Taking the time
derivative of this object one gets the following.

∂tρ̂t =
(
∂t
∣∣∣ψt〉)〈ψt∣∣∣+ ∣∣∣ψt〉(∂t〈ψt∣∣∣) = −iĤ

∣∣∣ψt〉〈ψt∣∣∣+ ∣∣∣ψt〉〈ψt∣∣∣iĤ = (1.29)

−iĤρ̂t + ρ̂tiĤ = −i
[
Ĥ, ρ̂t

]
. (1.30)

∂tρ̂t = −i
[
Ĥ, ρ̂t

]
is called the Liouville-von Neumann equation (LV). The operator ρt is

an instance of what is known as a density operator [9] (chapter 2), also known as a density
matrix for the case where dim

{
H
}
< ∞.

Definition 1.3.2 (Density Operator)

Density operators are positive trace class operators with trace 1. This set forms a
convex subset of the relevant Banach algebra that they live in. Assuming that we are
working in some Hilbert space H , we will denote the space of density operators acting
in H as S

(
H
)
. Positive in this context means that given some density operator ρ̂t,

and for any
∣∣∣ψ〉 ∈ H ,

〈
ψ
∣∣∣ρ̂t∣∣∣ψ〉 ≥ 0.

For the case of closed systems the density operator starting off in a pure state at time
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t = 0, i.e. some
∣∣∣ψ〉 in the relevant Hilbert space, has a corresponding time-evolved density

operator ρ̂t which is always a projector. We mentioned the trace earlier when defining trace
class operators. The trace is a linear operator which we shall be using frequently, therefore
a detailed treatment is in order. We begin with one of the more standard definitions of the
trace.

Definition 1.3.3 (Trace)

Let H be some arbitrary Hilbert and assume that σ̂ ∈ B
(
H
)
. Furthermore, let{∣∣∣ψn〉}

n
be any orthonormal basis of H . Then the trace is defined as follows.

Tr{σ̂} =
∑
n

⟨ψn|σ̂|ψn⟩

The value of the trace, assuming that it exists, is independent of the basis chosen.

Assuming that ρ̂, σ̂ ∈ S
(
H
)

for some arbitrary Hilbert space H , and
∣∣∣ϕ〉 ∈ H , the

following list of properties are true.

1) Tr
{
aρ̂ + bσ̂

}
= aTr

{
ρ̂
}

+ bTr
{
σ̂
}

(1.31)

2) Tr
{
ρ̂
}

=
∑
n

λn
(
ρ̂
)

(Sum over eigenvalues) (1.32)

3) Tr
{
ρ̂σ̂

}
= Tr{σ̂ρ̂} (1.33)

4) Tr
{
σ̂ρ̂

}
≤ Tr

{
σ̂
}
Tr
{
ρ̂
}

(1.34)

5) Tr
{∣∣∣ϕ〉〈ϕ∣∣∣} =

∣∣∣〈ϕ∣∣∣ϕ〉∣∣∣2 (1.35)
Assuming that we have a quantum system in state ρ̂, we may compute expectation values
of an arbitrary observable Â as follows.

6)
〈
Â
〉

ρ̂
= Tr

{
ρ̂Â

}
(Expectation V alue w.r.t state ρ̂) (1.36)

When a density operator is a projector we will call it a pure state, otherwise, it will be a
convex mixture of density operators σ̂ = ∑

n pnσ̂n, σ̂n are density operators and ∑n pn = 1.
Such states will be referred to as mixed states. Mixed states of course live in the space
S
(
H
)
. Owing to their projective properties, any pure state σ̂ will satisfy the the equality

Tr
{
σ̂2
}

= Tr
{
σ̂
}
; on the other hand, for a mixed states Tr{σ̂2} < 1 [9] (Chapter 2). The

map γ
(
Â
)

:= Tr
{
Â2
}
is known as the purity [9] and it is one of many measures of mixedness

for density operators. For any density operator ρ̂ acting in a finite-dimensional Hilbert space
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H , the purity will always be bounded as follows.

1
dim

{
H
} ≤ Tr

{
ρ̂2
}

≤ 1. (1.37)

Mixed states have a natural interpretation as a probabilistic ensemble. This comes about
physically when the system is known to be in, say, one of the states of a given ensemble{
pn, σ̂n

}
but there is no definite knowledge as to which of these elements it is other than a

probability distribution pn [9].

The concept of mixed states may also be used to quantify the quantumness of a system
in the following sense. Consider a quantum system in the pure state ρ̂t =

∣∣∣ψt〉〈ψt∣∣∣ at time
t, and consider a situation where we are interested in measuring some observable X̂. For
simplicity assume that we are working in a finite-dimensional Hilbert space and that the
observable X̂ has full rank. We may then diagonalize X̂ and use its eigenvectors

{∣∣∣ϕn〉}
n

to
represent the density operator ρ̂t as follows.

ρ̂t =
∑
n,m

αn(t)α∗
m(t)

∣∣∣ϕn〉〈ϕm∣∣∣. (1.38)

where αn(t) :=
〈
ϕn
∣∣∣ψt〉. In the case where

∣∣∣ψt〉 is an eigenvector of X̂, say
∣∣∣ϕj〉, (1.38) is

equal to
∣∣∣ϕj〉〈ϕj∣∣∣ as expected. If we however assume that

∣∣∣ψt〉 is not an eigenvector of X̂,
then in such a case (1.38) will have off-diagonal entries in the

{∣∣∣ϕn〉}
n

representation. This
structure will persist so long as the system is described by a superposition state. To see this
note that (1.38) is just

(1.38) =
(∑

n

αn(t)
∣∣∣ϕn〉

)(∑
m

〈
ϕm
∣∣∣α∗
m(t)

)
(1.39)

which is a diad of superposition states. The off-diagonal terms of the density are therefore
an inherently quantum feature, making the case where the off-diagonal entries are zero
minimally quantum. The off-diagonal terms of the matrix will not be zero in general. In
particular, under unitary evolution (1.38) will always have off-diagonal entries. In cases,
which we will be discussing shortly, where the dynamics are not generated by a unitary
group (1.2), the off-diagonal entries αn(t)α∗

m(t) will decay with respect to t. For large t we
would therefore have ∑

n,m

αn(t)α∗
m(t)

∣∣∣ϕn〉〈ϕm∣∣∣ ≈
∑
n

|αn(t)|2
∣∣∣ϕn〉〈ϕn∣∣∣ (1.40)

which is a mixed state of a family of orthogonal projectors. Such a state represents a
classical probability distribution since the different states

∣∣∣ϕn〉 are distinguishable amongst
one another. Note that there is no way to represent the right-hand side of (1.40) as a pure
state. The mixture (1.40) is a minimally quantum one with respect to the observable X̂.
Mixtures need not be minimally quantum in general, specific types of dynamics are required
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to achieve this. We have been using the term quantumness in a vague sense up until this
point, now that we have the tools to formalize what we wish to convey with such a word we
present a mathematical definition for quantumness.

Definition 1.3.4 (Quantumness)

Let H be an arbitraryHilbert space and consider a general quantum state ρ̂ ∈ S
(
H
)
.

A general quantum sate ρ̂ may always be written in the convex linear combination
ρ̂ = ∑

n pnρ̂n. The quantumness of a density operator ρ̂ will be defined as

Q
(
ρ̂
)

:=


∣∣∣∣12 ∑n

∑
m;m̸=n pnpmTr

{
ρ̂nρ̂m

}∣∣∣∣ (Mixed ρ̂)

1 (pure ρ̂)
(1.41)

which is a representation-independent quantity. Indeed 0 ≤ Q
(
ρ̂
)

≤ 1.

Quantumness may also be defined in terms of the purity γ.i.e.

Q
(
ρ̂
)

:=


∣∣∣∣γ(ρ̂)−∑
n pnγ

(
ρ̂n
)∣∣∣∣ (Mixed ρ̂)

1 (pure ρ̂)
(1.42)

To make sense of the value of Q(ρ̂) = 1 for pure states consider the mixed state ρ̂ε =
1
2σ̂1 + 1

2σ̂2,ε, with σ̂1 a pure state and σ̂2,ε := σ̂1+εη̂
1+ε (η̂ an arbitrary density operator). Then

lim
ε→0

Q
(
ρ̂ε
)

= lim
ε→0

∣∣∣∣Tr{σ̂1σ̂2,ε
}∣∣∣∣ = lim

ε→0

1
1 + ε

∣∣∣∣(Tr{σ̂2
1} + εTr{σ̂1η̂}

)∣∣∣∣ = (1.43)

Tr{σ̂2
1} = 1 (1.44)

This means that pure states may be approximated by mixed states with quantumness ar-
bitrarily close to one. This is in line with our intuition of pure states being the most
quantum-like. Now, consider (1.38) again. In this case

Q

∑
n

|αn(t)|2
∣∣∣ϕn〉〈ϕn∣∣∣

 = 1
2

∣∣∣∣∑
n

∑
mm ̸=n

pnpm
∣∣∣〈ϕn∣∣∣ϕm〉∣∣∣2∣∣∣∣ = (1.45)

1
2

∣∣∣∣∑
n

∑
mm ̸=n

pnpmδn,m

∣∣∣∣ = 0 (1.46)

which is minimal quantumness as per Definition 1.3.4. Mixed states allow us to estimate
the level of quantumness in a system to the extent that we are able to express the state in
question as a mixture, which is always possible. Quantumness may be used as a measure of
decoherence [12] which is the theory concerned with studying the transition of quantum states
to classical probability states as noted in (1.40). The measure we have defined in Definition
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1.3.4 allows us to study the latter but in an inverted sense. i.e. minimal quantumness
will correspond with maximal decoherence and vice-versa. We now present a mathematical
definition for decoherence

Definition 1.3.5 (Decoherence Measure)

Let H be an arbitraryHilbert space and consider a general quantum state ρ̂ ∈ S
(
H
)
.

A general quantum sate ρ̂ may always be written in the convex linear combination
ρ̂ = ∑

n pnρ̂n. The decoherence measure of a density operator ρ̂ will be defined as

DK
(
ρ̂
)

:= 1 − Q
(
ρ̂
)

(1.47)

Indeed 0 ≤ DK
(
ρ̂
)

≤ 1. Maximum and minimum decoherences occur when DK
(
ρ̂
)

=
1 and DK

(
ρ̂
)

= 0 respectively.

1.3.2 Trace for the Infinite-Dimensional H Case

Let H be some infinite dimensional Hilbert space and let K̂ ∈ S
(
H
)
. Therefore

Tr
{
K̂
}

=
∞∑
n=0

〈
ϕn
∣∣∣K̂∣∣∣ϕn〉 < ∞ (1.48)

since density operators are trace class, where {
∣∣∣ϕn〉}∞

n=0 = H . Recall that trace-class oper-
ators have only point-spectrum (eigenvalues). Therefore, if the set {

∣∣∣ϕn〉}∞
n=0 is taken to be

the set of eigenvectors of K̂, then

Tr
{
K̂
}

=
∞∑
n=0

λn
(
K̂
)
. (1.49)

This sum produces no issues since the spectrum of trace-class operators is always absolutely
summable.

As we discussed in the previous subsection, calculating the spectrum of an arbitrary
trace-class operator is in general an arduous task. Here we would need an infinite amount
of eigenvalues and eigenvectors in order to calculate the trace. In some instances, however,
the trace class operator K̂ will be an integral operator, and the theory of traces for integral
operators has some useful results that we may tap into. The following is a direct consequence
of Mercer ’s theorem from functional analysis [31].
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Theorem 1.3.1 (Corollary to Mercer’s Theorem)

Suppose K(x, y) is a continuous, symmetric positive-definite kernel that is compactly
supported; define

K̂ : H → H :=
∣∣∣ψ〉 →

∫
R

∫
R
K(x, y)

∣∣∣x〉〈y∣∣∣ψ〉dxdy (1.50)

then
Tr
{
K̂
}

=
∫
R
K(x, x)dx (1.51)

The way integral operators come about in closed quantum systems may be exemplified
by the following. Consider the case where H = L2

(
R
)
, and let

∣∣∣ψ〉〈ψ∣∣∣ ∈ S
(
L2(R)

)
. Let us

now act on both sides of
∣∣∣ψ〉〈ψ| with identity ( where we use some conventions from physics

[6] Chapter 6) . ( ∫ ∣∣∣x〉〈x∣∣∣dx)∣∣∣ψ〉〈ψ∣∣∣( ∫ ∣∣∣x〉〈x∣∣∣dx) = (1.52)∫ ∫
ψ∗(x)ψ(y)

∣∣∣x〉〈y∣∣∣dxdy (1.53)

In function notation such an operator acts on an arbitrary function f(x) ∈ L2
(
R
)

as follows.

∣∣∣ψ〉〈ψ| : f(x) → ψ(x)
∫
R
ψ∗(y)f(y)dy. (1.54)

In physics, assuming that the states ψ(x) are compactly supported and continuous is usually
physically reasonable and more faithful to reality than otherwise. Hence, Theorem 1.3.1 is
truly all we need for the physical case. However, Theorem 1.3.1 was generalized by Brislawn
to include a wider family of kernels K(x, y); this includes any Hilbert-Schmidt Kernel [3],
which will be our primary focus. This means that may work in the more general setting
allowed by Brislawn’s results [48] and rest at ease knowing that such generalities include the
physical setting encompassed by Theorem 1.3.1. Rather than cite all of the relevant papers
that Brislawn published, the interested reader is recommended to consult [48](Addenda D)
for a succinct discussion and detailed list of references.

1.4 Open Quantum Systems and the Partial Trace
The point of departure from closed to open quantum systems takes place when one assumes

that the system of interest, which we will refer to as S, is interacting with another system/
other systems which we will call the Ek for the kth systems. We use the letter E to emphasize
the dichotomy between System and Environments. The total dynamics of the system S and
the environments Ek will not be our focus, but rather the local dynamics pertaining to S. To
treat compound quantum systems, one must construct bigger Hilbert spaces. i.e. let HS and
HEk all be arbitrary Hilbert spaces and let ρ̂S ∈ S

(
HS

)
, ρ̂E

k ∈ S
(
HEk

)
(This superscript

and subscript convention will make things easier to organize later). Furthermore assume
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that Ĥtot is a Hamiltonian acting in HS ⊗ ⊗
k HEk .The Liouville-von Neumann equation

(1.30) then has the following solution.

e−itĤtot

(
ρ̂S
⊗
k

ρ̂E
k
)
eitĤtot (1.55)

In principle, the state (1.55) contains all information about the state of the system S and
all environments Ek after time evolution. In the case where some scientist conducting ex-
periments on S has no means by which to measure the properties of the Ek, such a state
(1.55) includes more than can be known. The state of the object the scientist is observing
might live only in HS, but due to the lack of knowledge regarding the correlations of S to
the Ek the state of S will now evolve in a non-unitary fashion since information and energy
and perhaps other things might be traded between S and the Ek as time evolves. If the Ek

are large enough, such an evolution may become irreversible!

How does one isolate the local dynamics pertaining to the system S? The answer is
simple, we take a trace! But not over all of S1

(
HS ⊗ ⊗

k HEk

)
, we trace only over the

stuff we cannot physically track, in this case, this is S1
(⊗

k HEk

)
. This brings us to the

definition of the partial trace. We write the definition in a way that is suggestive of the
models we shall be working on.

Definition 1.4.1 (Partial Trace)

Let HS ⊗⊗
k HEk be some arbitrary tensor product Hilbert space, and assume that

σ̂ ∈ B
(
HS ⊗⊗

k HEk

)
. Furthermore, let

{∣∣∣ϕEk

n

〉}
n

be any orthonormal basis of HEk .

Then the partial trace over B
(
HEl

)
is the linear map

TrEk : B
(
HS ⊗

⊗
k

HEk

)
→ L

(
HS ⊗

⊗
k;k ̸=l

HEk

)

defined as follows
TrEl{σ̂} =

∑
n

⟨ϕEl

n |σ̂|ψEl

n ⟩

where L (H ) refers to the space of linear operators acting in H . The value of the
partial trace is independent of the basis chosen.

If we specialize the partial trace to only the space S
(
HS ⊗ ⊗

k HEk

)
, then all of the

partial traces will exist and will be once again density operators.

Why the partial trace?

To assure ourselves that the partial trace is the appropriate mapping to use in the de-
duction of the local dynamics consider an arbitrary observable ÂS acting in HS. There is a
natural embedding of such an observable that extends it to the space of observables acting
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in HS ⊗⊗NE
k=1 HEk .

ÂS → ÂS ⊗
NE⊗
k=1

IEk , (1.56)

where IEk is the identity operator of B
(
H k

E ). Viewing AS⊗⊗NE
k=1 IEk as an observable acting

in the total Hilbert space HS ⊗ ⊗NE
k=1 HEk one can obtain the expectation value using the

total system’s density operator using (1.36) as follows

〈
ÂS ⊗

NE⊗
k=1

IEk

〉
ρ̂SE

= TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂SE

(
ÂS ⊗

NE⊗
k=1

IEk

)}}}}}
(1.57)

In the usual closed quantum systems setting there are no correlations assumed between S and
any Ek in the universe. The total state ρ̂SE must therefore be a product state; for the readers
knowledgeable of quantum entanglement we briefly comment that an uncorrelated state is
forcibly unentangled, quantum correlations being more general than entanglement (see [46]
chapter 4). Hence, ρ̂SE has the form ρ̂S ⊗ ⊗NE

k=1 ρ̂Ek , with ρ̂S ∈ B
(
HS

)
, ρ̂E

k ∈ B
(
HEk

)
.

We now compute (1.57) to obtain

TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂S ⊗

NE⊗
k=1

ρ̂Ek

(
ÂS ⊗

NE⊗
k=1

IEk

)}}}}}
= (1.58)

TrS

{
TrE1

{
TE2

{
...
{
TrENE

{
ρ̂SÂS ⊗

NE⊗
k=1

ρ̂Ek

}}}}}
= (1.59)

TrS

{
ρ̂SÂS

} NE∏
k=1

TrEk

{
ρ̂Ek

}
= TrS

{
ρ̂SÂS

}
= (1.60)

〈
ρ̂SÂS

〉
ρ̂S

(1.61)

We, therefore, conclude that
〈

ÂS ⊗
NE⊗
k=1

IEk

〉
ρ̂SE

=
〈

ρ̂SÂS

〉
ρ̂S

(1.62)

Meaning that the information needed to compute the statistical properties of some observable
in S are completely contained in the reduced density operator

TrE1

{
TE2

{
...
{
TrENE

{
ρ̂S ⊗

NE⊗
k=1

ρ̂Ek

}}}}
= ρ̂S (1.63)

In this discussion, we have assumed a tensor product structure for the environmental degrees
of freedom, this was not a technical assumption, however. We may arrive at the same
conclusion (1.62) without the latter assumption via an identical approach.
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Non-dynamical example

To understand the effects of the environments Ek on measurements being conducted in
S, let us take the environment to be a single E in the state ρ̂E ∈ S

(
HE

)
, where HE is an

arbitrary Hilbert space. Let us assume that the sate ρ̂E is diagonal with respect to some
basis

{∣∣∣Ei〉}
i
. Finally, let us assume that the state of S is pure, namely

∣∣∣ψ〉〈ψ∣∣∣, for some
vector

∣∣∣ψ〉 ∈ HS ( an arbitrary Hilbert space). Consider an observable X̂ with countable
Spec

{
X̂
}

which is all point spectrum, and associated eigenvectors
{∣∣∣ηi〉}

i
that span HS;

for the case where HS span will of course refer to the closure of the span of
{∣∣∣ηi〉}

i
. We may

represent
∣∣∣ψ〉〈ψ∣∣∣ in such a basis as ∑i

∑
j αiα

∗
j

∣∣∣ηi〉〈ηj∣∣∣; where αi :=
〈
ηi
∣∣∣ψ〉. Furthermore,

consider a state ρ̂SE ∈ S
(
HS ⊗ HE

)
with the following representation.

ρ̂SE =
∑
i,j

αiα
∗
j |ηi⟩⟨ηj

∣∣∣⊗ ∣∣∣Ei〉〈Ej∣∣∣. (1.64)

Such a state is non-separable, i.e. it may not be written as a tensor product ρ̂S ⊗ ρ̂E where
ρ̂S and ρ̂E are respectively elements of S

(
HS

)
and S

(
HE

)
; such a state (1.64) therefore

describes correlations between S and E. As before, given some local observable ÂS of HS,
we would like to compute its statistics; starting with the expectation value. The density
operator we need is the reduced state of (1.64). i.e.

TrE
{
ρ̂SE

}
= TrE

{∑
i,j

αiα
∗
j |ηi⟩⟨ηj

∣∣∣⊗ ∣∣∣Ei〉〈Ej∣∣∣} = (1.65)

∑
i,j

αiα
∗
jTrE

{∣∣∣Ei〉〈Ej∣∣∣}|ηi⟩⟨ηj
∣∣∣ =

∑
i,j

αiα
∗
jδij|ηi⟩⟨ηj

∣∣∣ = (1.66)

∑
i

|αi|2
∣∣∣ηi⟩⟨ηi∣∣∣ (1.67)

This is a noteworthy result for two reasons. First, the resulting density operator is diagonal.
Taking the partial trace over the perfectly distinguishable environmental degrees of freedom
has induced minimal quantumness (Definition 1.3.4) and therefore maximal decoherence
(Definition 1.3.5). Second, at the risk of being redundant, one should remark that the
resulting density operator is a mixed state in spite of

∣∣∣ψ〉〈ψ∣∣∣ having been pure to begin
with. It is the correlations with E and our ignorance of the information of the state of E
that induces maximal decoherence and leaves us with a state that is de facto a classical
probability distribution.

1.5 Environmentally Induced Non-Unitarity
We have seen that the correlations between some quantum system S and its environmentsEk

are the source of decoherence. The imminent question is now, how do such correlations arise?
To shed light on this question consider once again a total Hilbert space HS ⊗ HE and let
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Ĥtot be some Hamiltonian acting in such a Hilbert space. Since we are only interested in
the creation of correlations, as opposed to the time-evolution of pre-existing correlations,
we will narrow our attention to initial states ρ̂SE0 ∈ S

(
HS ⊗ HE

)
that are separable. i.e.

ρ̂SE0 = ρ̂S0 ⊗ ρ̂E0 . The time-evolution operator obtained from solving the LV equation (1.30)
in such a case is Ût = e−itĤtot . The local time evolution of the open quantum system S is
hence

ρ̂St
= TrE

{
Ût

(
ρ̂S0 ⊗ ρ̂E0

)
Û†
t

}
. (1.68)

Now, assume that the environment E is in the diagonal state ρ̂E0 = ∑
i αi|Ei⟩⟨Ei|; this

assumption does not affect generality since one can always use the invariance of the trace
under unitary transformations in order to diagonalize the state ρ̂E0 , such a diagonalization
will, of course, change the representation of Ĥtot. The state (1.68) can now be expanded as
seen below.

TrE
{
Ût

(
ρ̂S0 ⊗

∑
i

αi|Ei⟩⟨Ei|
)

Û†
t

}
(1.69)

=
∑
i

∑
j

√
αi
〈
Ej
∣∣∣Ût

(
ρ̂S0 ⊗ |Ei⟩⟨Ei|

)
Û†
t

∣∣∣Ej〉√αi = (1.70)

=
∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣∣Ût

∣∣∣Ek〉〈Ek∣∣∣(ρ̂S0 ⊗ |Ei⟩⟨Ei|
)∣∣∣El〉〈El∣∣∣Û†

t

∣∣∣Ej〉√αi = (1.71)

∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣∣Ût

∣∣∣Ek〉(ρ̂S0

〈
Ek
∣∣∣Ei⟩⟨Ei∣∣∣El〉)〈El∣∣∣Û†

t

∣∣∣Ej〉√αi = (1.72)

∑
i

∑
j

∑
k

∑
l

√
αi
〈
Ej
∣∣∣Ût

∣∣∣Ek〉(ρ̂S0δkiδil

)〈
El
∣∣∣Û†

t

∣∣∣Ej〉√αi = (1.73)

∑
i

∑
j

√
αi
〈
Ej
∣∣∣Ût

∣∣∣Ei〉ρ̂S0

〈
Ei
∣∣∣Û†

t

∣∣∣Ej〉√αi (1.74)

The operators
M̂ij,t := √

αi
〈
Ej
∣∣∣Ût

∣∣∣Ei〉 (1.75)
have some interesting properties. The first is the resolution of identity in the following sense.∑

i

∑
j

M̂†
ij,tM̂ij,t = IS (1.76)

Proof. ∑
i

∑
j

M̂†
ij,tM̂ij,t =

∑
i

αi
∑
j

〈
Ei
∣∣∣Û†

t

∣∣∣Ej〉〈Ej∣∣∣Ût

∣∣∣Ei〉 = (1.77)

∑
i

αi
〈
Ei
∣∣∣Û†

tIS ⊗
(∑

j

∣∣∣Ej〉〈Ej∣∣∣)Ût

∣∣∣Ei〉 = (1.78)

∑
i

αi
〈
Ei
∣∣∣Û†

tIS ⊗ IEÛt

∣∣∣Ei〉 (1.79)

∑
i

αi
〈
Ei
∣∣∣IS ⊗ IE

∣∣∣Ei〉 = IS
∑
i

αi = IS (1.80)
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The second interesting property is that the operators M̂ij(t) will, in general, generate non-
unitary evolution; with the exception of very special Ĥtot, these maps will induce decoherence.
To see this, let us specialize the above to a simple case where the Hamiltonian Ĥtot =
ÂS ⊗∑

iEi
∣∣∣Ei〉〈Ei∣∣∣. Where ÂS is an observable acting in HS. With such a Hamiltonian it

can be easily shown that
M̂ij,t =

√
αie

−itEiÂSδij (1.81)
and hence

(1.74) =
∑
i

∑
j

αie
−itEiÂSδijρ̂S0e

itEiÂSδji = (1.82)

∑
i

αie
−itEiÂS ρ̂S0e

itEiÂS . (1.83)

The density operator (1.83) is mixed for all t
(

unless
[
ÂS, ρ̂S(0)

]
= 0

)
. This means that

the purity of ρ̂S0 will not be preserved and thus the non-unitarity dynamics. For all t, the
operators

{
M̂ij,t

}
ij

are an instance of what is referred to as a family of Kraus operators
in the literature of quantum information and quantum computation[9] [46]. Non-unitary
evolution will always be generated by a family of Kraus operators. The maps generated
by a family of Kraus operators are what is known as a Quantum Map in the theory of
quantum information and quantum computation [9] [46], a concept that we will develop
further in the following chapter. The hurdle that comes from this approach to the mod-
eling of open quantum systems is two-fold. Firstly, one must compute the inner products
M̂ij,t :=

〈
Ej
∣∣∣Ût

∣∣∣Ei〉. Secondly, assuming that the explicit nature of the map M̂ij,t is known
for all ij, it will remain a difficult task to understand how these operators act on ρ̂S0 from
the left and from the right. Both of these aforementioned hurdles will require us to under-
stand the spectral decomposition of the operator Ĥtot in order to understand the explicit
nature of Ût; a task that we concluded to be in general intractable earlier in this chapter
in sections (1.2) and (1.3). All hope is not lost, however, formidable estimation techniques
may be implemented in order to tame these hurdles. For the cases where the environment
E is very large compared to the systems S, one may implement the so-called Born-Markov
approximations [17][12][46] that yield a relatively wieldy equation called the GKLS (after
its creators Gorini–Kossakowski–Sudarshan–Lindblad) [46] that generalizes the LV equation
for the case of the non-unitary dynamic generated by a semigroup. Such an equation allows
an indirect estimation of the associated Kraus operators. We present the GKSL equation
here, although the models pertaining to the main results of this work will not require us to
utilize GKSL equation in any practical sense other than to exhibit some physical examples
of non-unitarity in the next section.

Let the total Hamiltonian Ĥtot have the following structure.

Ĥtot = ĤS + ĤE + ĤI (1.84)

i.e. it will be a linear combination of the self-Hamiltonians of S and E respectively as well as
an interaction term ĤI . Under necessary assumptions required by the GKSL [17] framework
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one may transition from (1.74) to the following; i.e. (1.74) is a solution to an equation of
the following form.

∂tρ̂St
= −i

[
ĤS, ρ̂St

] +
∑
i

γi

(
L̂iρ̂St

L̂†
i − 1

2

{
L̂†
i L̂i, ρ̂St

})
(1.85)

This is the GKSL equation, the operators L̂i are referred to as collapse operators with
respective rates γi. The elements involving the collapse operators on the right-hand side
of (1.85) will constitute the non-unitary dynamics. These collapse operators will induce
dissipation and decoherence. The Liouivillian term−i

[
ĤS, ∂tρ̂St

] will induce the unitary
self-dynamics of the system S. Equation (1.85) was originally developed for the case of
bounded collapse operators in [49] but recently it has been formalized on equal theoretical
grounds for the case of unbounded collapse operators in [50]. In the next section, we will
show some physical examples of non-unitary evolution, two of which will arise from solving
the appropriate GKSL equation.

1.6 Physical Examples of Open Quantum Systems
Quantum mechanics is a theory of matter which is more fundamental than the classical

theories afforded by Newtonian dynamics and Maxwell’s equations. Quantum mechanics
is therefore the correct theory to describe anything around us. In this sense, everything
is a Quantum Open system because everything we deemed to be a system will sit within
a larger system. If the latter were not to be the case we would inevitably have to face
the Heisenberg-Cut dilemma [35] which asks "where does one draw the boundary between
the classical and the quantum?". Classical beings nevertheless exist in a realm where so-
called quantum effects may be negligible and classical mechanics is enough to aid us in
understanding our environment. However, recent interest in technology which is on the
Nanoscale has functioned as the impetus of a deeper interest regarding the non-unitary (open
systems) dynamics of quantum mechanical systems. Some Quantum computers constructed
by IBM [36], for example, are built from tiny Quantum circuits which are highly susceptible
to minuscule disturbances coming from its entourage. In order to truly understand these
Quantum circuits and their dynamical properties, a strong understanding of the non-unitary
evolution must be taken into account and this requires us to consider the quantum system
as open. The latter is also true for any system; as the size of the system becomes smaller
the necessity to include interaction terms between the system and its environment becomes
greater. We will give three examples of open quantum systems in this section. The first will
be the spontaneous emission of a two-level atom. This model exemplifies both dissipative
and decoherence effects via the study of an atom, initially in an excited state, interacting
with the vacuum. One expects that owing to the vastness of the vacuum compared to the
smallness of the atom, the atom will emit a photon and lose its energy to the vacuum.
Such a physical system therefore cannot be modeled via the unitary evolution afforded by
the LV equation. We will therefore make use of the GKSL equation appropriate for this
system in order to study dynamics that are more physically grounded. Next, we will look
at another one of the canonical models of decoherence, namely scattering decoherence. This
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model will be used to exemplify the fact that decoherence need not be accompanied by
dissipation whilst dissipation is always accompanied by decoherence. The model will consist
of a mesoscopic-sized sphere being bombarded by a field of monochromatic light. We will
see that under a very short time scale, virtually full decoherence takes place. The last model
we will present will be a monitoring model akin to the main item of study in this thesis (see
Chapters 5 and 6). Here we will study a multipartite/multifaceted (we will use both of these
terms interchangeably) open quantum system model. Up until now, we have considered
S to be one entity; the formalism we have developed nevertheless allows for ρ̂S0 to be a
separable tensor product state at t = 0 (multipartite/multifaceted). We may also evolve this
multipartite state non-unitarily by considering dynamics between this multipartite system
S’s state and some environments Ek.

1.6.1 Spontaneous Emission
Consider a two-level atom coupled to a bath in the vacuum states. Such a system may

be modeled with HS = C2 and HE = L2
(
R
)

for the system S and the environment E
respectively. We will let the total Hamiltonian modeling the dynamics be that which is used
in [15] chapter 3. i.e.

Ĥtot = ωa
2 σ̂z +

∑
k

ωkb̂†
kb̂k +

∑
k

(gkb̂k + gkb̂†
k)(σ̂+ + σ̂−) (1.86)

For an introductory synopsis on spin algebras for the two-level system and/or the ladder op-
erators of the quantum harmonic oscillator being used here, we recommend the introductory
quantum textbook [6]. The respective GKSL equation of such a model may be computed to
be

∂tρ̂St
= −i

2 (ωa + ∆ωa)[σ̂z, ρ̂St
] + γD[σ̂−]ρ̂St

. (1.87)

where D[σ̂−]
(
ρ̂
)

= σ̂−ρ̂σ̂+ − 1
2(σ̂+σ̂−ρ̂ + ρ̂σ̂+σ̂−), [15] for a derivation. σ̂z is an element

of the Pauli matrices. The constants ∆ωa and γ depend on the environmental frequencies
ωk and the coupling parameters gk. Letting

∣∣∣0〉, and
∣∣∣1〉 be some basis for C2, the Pauli

matrices will have the following representation.

σ̂x =
∣∣∣0〉〈1∣∣∣+ ∣∣∣1〉〈0∣∣∣ (1.88)

σ̂x = i
∣∣∣0〉〈1∣∣∣− i

∣∣∣1〉〈0∣∣∣ (1.89)

σ̂z =
∣∣∣1〉〈1∣∣∣− ∣∣∣0〉〈0∣∣∣ (1.90)

σ̂+ = 2(σ̂x + iσ̂y) (1.91)
σ̂− = 2(σ̂x − iσ̂y) (1.92)

The operators b̂ and b̂† are the ladder operators for the QSHO discussed in (1.24) and have
the following properties for an arbitrary number state

∣∣∣n〉
b̂
∣∣∣n〉 =

√
n
∣∣∣n− 1

〉
, b̂

∣∣∣0〉 = 0 (1.93)
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b̂†
∣∣∣n〉 =

√
n+ 1

∣∣∣n+ 1
〉

(1.94)

We now solve (1.87). The most general form a the density operator ρ̂St
∈ S

(
C2
)

can take
is

ρ̂St
= 1

2[IS + x(t)σ̂x + y(t)σ̂y + z(t)σ̂z] (1.95)

Coherences (off-diagonal entries) are present because of the σ̂y and σ̂x terms. We will
therefore be able to monitor decoherence by analyzing the functions x(t) and y(t). The
scalar functions x(t), y(t), and z(t) are computed in the following way.

• ∂tz(t) = Tr{σ̂z∂tρ̂St
}

• ∂ty(t) = Tr{σ̂y∂tρ̂St
}

• ∂tx(t) = Tr{σ̂x∂tρ̂St
}

Using the GKSL equation to substitute for ∂
∂t

ρ̂St
and ρ̂St

using (1.95) and the above differ-
ential equations for x(t), y(t) and z(t) we have

• ∂tz(t) = −γ(z(t) + 1)

• ∂ty(t) = (∆ωa)x(t) − γ
2y(t)

• ∂tx(t) = −(∆ωa)y(t) − γ
2x(t).

Assuming that the atom is initially in the excited state, i.e. x(0) = 0, y(0) = 0 and z(0) = 1,
we get the following solution to (1.87).

• z(t) = 2e−γt − 1

• y(t) = −e− γt
2 sin((ωa + ∆ωa)t)

• x(t) = e− γt
2 sin((ωa + ∆ωa)t).

The solution to the GKSL equation in the spontaneous emission case is therefore the following
density operator.

ρ̂St
= e−γt

∣∣∣1〉〈1∣∣∣+ 1 + i

2 e−γt sin ((ωa + ∆ωa)t)
∣∣∣1〉〈0∣∣∣+ (1.96)

1 − i

2 e−γt sin ((ωa + ∆ωa)t)
∣∣∣0〉〈1∣∣∣+ (

1 − e−γt
)∣∣∣0〉〈0∣∣∣ (1.97)

Notice the exponential decay! This was to be expected! Also, notice the decoherence, i.e.
DK(ρ̂St

) → 0 as t → ∞ (using the decoherence measure defined in Definition 1.3.5). The off-
diagonal entries decay as expected. In the limit t → ∞ this state converges the ground state∣∣∣0〉〈0∣∣∣. A caricaturistic depiction of this setting is exhibited on the following page (Figure
1.1). Notice that had we ignored any interactions with the vacuum, the two-level atom would
have evolved unitarily via the Hamiltonian ĤS = ωaσ̂z

2 . However, due to the initial state
being

∣∣∣1〉〈1∣∣∣, there would be no dynamics because the excited state is an eigenvector of the
Pauli matrix σ̂z.
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Figure 1.1: A caricaturistic depiction of a single energized spin in a bath of oscillators. The vast
bath of oscillators greedily yearning for the energy ℏω of the spin system. Greatly outnumbered
and outmatched, the spin system has no choice but to give up its energy. Artwork by Timothy
Martinez @timbosculpt.

https://www.instagram.com/timbosculpt/?hl=en
https://www.instagram.com/timbosculpt/?hl=en
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1.6.2 Collisional Decoherence

Let
∣∣∣x〉 represent the generalized eigenvector of the position operator X̂ of a mass point

of some mesoscopic object (system) S,
∣∣∣E〉 will represent the state of a scattered particle or

particles (environment) E. We will consider a simple case where the system S is large enough
that it experiences no recoil from the scattered particles constituting the environmental
degrees of freedom E. Some examples of systems with no recoil would be large molecules,
dust particles, or even something like a bowling ball scattering photons (although describing
a bowling ball with quantum mechanics is rather tenuous). The photons in all of these cases
will have virtually no effect on the trajectory of the systems due to the size disparity between
the systems in question and the scattering particles; a recoilless approximation is therefore
appropriate. The recoilless scattering dynamics will now be summarized by the appropriate
S −matrix (scattering matrix) as it is done in [18] [12].∣∣∣x〉⊗

∣∣∣E〉 t−→
∣∣∣x〉⊗

∣∣∣Ex〉 =
∣∣∣x〉⊗ Ŝx

∣∣∣E〉. (1.98)

The S−matrix, Ŝx is a unitary operator that maps some initial state of incoming particles,
say photons, to the final state (scattered state). The nature of the S − matrix will indeed
depend on the type of particles being scattered off the center x, the type of particle doing
the scattering, the forces involved, and the initial velocities; the details regarding generalities
of S − matrix theory lie beyond the scope of the present discussion so we will omit them
referring the interested reader to the relevant discussion in [18] [12]. In [18] such a scattering
setup is considered in order to compute decoherence time scales for mesoscopic systems.
There, an arbitrary wave function of the total system S and E evolves as depicted below,
for S in the initial states ϕ(x) ∈ L2

(
R
)

and E in the initial state
∣∣∣E〉 ∈ HE.

( ∫
ϕ(x)|x⟩

)
dx⊗ |E⟩ t−→

∫
ϕ(x)|x⟩ ⊗ Ŝx|E⟩dx, (1.99)

the associated time-evolved density operator is therefore∫ ∫
ϕ(x)ϕ∗(y)

∣∣∣x⟩
〈
y
∣∣∣⊗ ∣∣∣Ex〉〈Ey∣∣∣dxdy. (1.100)

The reduced density operator may be easily computed to be

TrE

{ ∫ ∫
ϕ(x)ϕ∗(y)

∣∣∣x⟩
〈
y
∣∣∣⊗ ∣∣∣Ex〉〈Ey∣∣∣dxdy} = (1.101)

∫ ∫
ϕ(x)ϕ∗(y)

∣∣∣x⟩
〈
y
∣∣∣TrE{∣∣∣Ex〉〈Ey∣∣∣}dxdy =

∫ ∫
ϕ(x)ϕ∗(y)

〈
Ey
∣∣∣Ex〉∣∣∣x⟩

〈
y
∣∣∣dxdy. (1.102)

The kernel
〈
Ey
∣∣∣Ex〉 will yield non-unitary dynamics, the nature of which will depend on

the properties of the particles being scattered; this includes the state of particles at t = 0
amongst other things. If the initial state of E belongs to the subspace associated with the
absolutely continuous spectrum of Ŝx, then in such a case the kernel

〈
Ey
∣∣∣Ex〉 will only

yield decoherence (See section 5.8). More generally, if the initial state of E belongs to the
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subspace associated with the Rajchman [59] spectrum of Ŝx then once again we will only
see non-unitary dynamics involving decoherence (See Section 5.8). The latter details will be
formalized in Chapter 5, for now, we will focus on the physically derived case where

〈
Ey
∣∣∣Ex〉

is a function that becomes small as |x − y| becomes large; this follows from the relevant
discussions in [18] [12].

Photon scattering, Long-Wavelength limit

Let us fix x and x′ for the moment. Assume that E are environmental photons and S a
sphere so massive that it undergoes no recoil when scattering photons; if the wavelength of
the incoming photons satisfies λ >> |x−x′|, then a single scattering event will not resolve the
distance |x−x′| i.e. coherences of distances on this order will not instantaneously disappear.
They will decay exponentially. Using photons restricted to the above condition it can be
shown [18](other zeh and joos paper) that

⟨E|Ŝ†
x′Ŝx|E⟩ ≈ e−Λt(x−x′)2 (1.103)

for n photon scattering events, where the term Λt depends on n. i.e. the number of scattering
events n is directly proportional to t. The relationship is the following, t = n

L2∗flux , L is the
length used to normalize the momentum wave functions [18]. The termΛ is the scattering
constant, it represents the physical properties of the system-environment interaction. This
constant is proportional to the size of the systems, i.e. a bowling ball will have a Λ that
is significantly greater than the Λ of a dust particle. Details regarding the computation
of Λ may be found in [18]. In the density operator representation, we can summarize the
dynamics for the state of the systems ϕ(x) ∈ L2

(
R
)

at t = 0 as follows.

ρ̂St
:=
∫ ∫

ϕ(x)ϕ∗(x′)
∣∣∣x〉〈x′

∣∣∣dxdy t−→ ρ̂St
:=
∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
∣∣∣x〉〈x′

∣∣∣dxdx′. (1.104)

In Figure 1.2 on the next page, we present a fun caricaturistic interpretation of this model.
Focusing on the kernels, the time-evolved kernel is.

KS(x, x′, t) := ϕ(x)ϕ∗(x′)e−Λt(x−x′)2 (1.105)

A time derivative of the latter yields the differential equation

∂tKS(x, x′, t) = −Λ(x− x′)2KS(x, x′, t). (1.106)

Which is equivalent to the following density operator equation.

∂tρ̂St
= −Λ

[
X̂,
[
X̂, ρ̂St

]]
(1.107)

This is indeed the nonunitary part of the master equation of the recoilless scattering model.
As evidence, look at the kernel 1.105. It is clearl that the off-diagonal entries are decaying
exponentially (i.e. x ̸= x′). If the latter is not a satisfactory argument, one may compute the
purity of ρ̂St

to find that it is less than 1 for t > 0, unfortunately computing DK (Definition
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Figure 1.2: A caricaturistic depiction of collisional decoherence. The superpositional nature of the
large oscillator is suppressed by the interaction (via elastic scattering) with the smaller environ-
mental oscillators. Artwork by Artwork by Timothy Martinez @timbosculpt.

1.3.5) is not an easy task in this case; it may nevertheless be done.

Tr
{
ρ̂2
St

}
= (1.108)

Tr
{ ∫ ∫ ∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
ϕ(y)ϕ∗(y′)e−Λt(y−y′)2

∣∣∣x〉〈x′
∣∣∣y〉〈y′

∣∣∣dxdx′dydy′
}

= (1.109)

Tr
{ ∫ ∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
ϕ(x′)ϕ∗(y′)e−Λt(x′−y′)2

∣∣∣x〉〈y′
∣∣∣dxdx′dy′

}
= (1.110)∫ ∫

|ϕ(x)|2|ϕ∗(x′)|2e−2Λt(x−x′)2
dxdx′ =

∫ ∫
|KS(x, x′, 0)|2e−2Λt(x−x′)2

dxdx′ < 1 (1.111)

where we have used the generalization of Theorem 1.3.1 discussed in [48] when going from
(1.110) to (1.111). The exponential term damps the integrand in the latter. Hence, for large
t the integrand approaches zero and therefore γ(ρ̂St

) = Tr
{
ρ̂2
St

}
→ 0.

Since the scattering process does not affect the trajectory of our system particle we may
include the intrinsic dynamics ĤS = 1

2mP̂2 into the latter equation to render the full master
equation

ρ̂St
= −i

[ 1
2mP̂2, ρ̂St

]
− Λ

[
X̂,
[
X̂, ρ̂St

]]
. (1.112)

Notice that the position operator X̂ above is the only collapse operator. Values for Λ are
given in Table 2.1 for two differently sized dust particles undergoing scattering interactions
with varying environments. Table 2.1 has been taken from [18] chapter 3.

Prior to scrutinizing equation (1.112) further, let us refocus our attention back to the

https://www.instagram.com/timbosculpt/?hl=en
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Table 1.1: Λ in cm−2s−1 for two sizes of "dust particles" and various types of scattering pro-
cesses evolving according to (1.112). This quantity measures how fast interference between
different positions disappears for the long-wavelength limit. The figure is taken from [18]
chapter 3 page 66

Environment Λ for dust grain, 10−3cm Λ for dust particle, 10−5cm
Cosmic background radiation 106 10−6

300k photons 1019 1012

Sunlight on earth 1021 1017

Air molecules 1036 1032

Laboratory vacuum 1023 1019

case where there is no self dynamics for the system ĤS; this encapsulates the non-unitary
dynamics pertaining to the recoilless processes. As expected, the recoilless aspect of this
interaction means that there is no dissipation; but as we have already mentioned, this does
not mean that decoherence is not present. We have already elucidated on this comment
by computing the purity of the evolved state in (1.108), however, to further illustrate the
effects of decoherence let us take a generic state for some mesoscopic system to be in a simple
superposition at t = 0 as is done in [18] chapter 3.

ϕ(x) = N1e
−(x−a1)2 +N2e

−(x−a2)2 (1.113)

Such a state characterizes a typical non-local state of matter. Assuming that our sphere S is
in such a state, we can study the decay of the "off-diagonal" lumps of the associated density
operator’s kernel after scattering has taken place for an amount of time t. In Figure Figure
1.3 below a depiction of the time evolution of this Gaussian superposition (1.113) is pro-
vided. Figure 1.3 is taken from [18] chapter 3. Note the decaying in the off-diagonal entries
KS(x, x′, t), in particular those belonging to the off-diagonal lumps. A decoherence time
scale may be defined as τ∆x := 1

Λ(∆x)2 , ∆x = |x−x′|, this encapsulates the rate at which de-
coherence takes place. Smaller decoherence time scales correspond to larger separations ∆x.
The larger the particle is, the larger Λ is, and therefore the smaller τ∆x is for a respective ∆x.
Notice the differences in the values for Λ of dust particles of diameter 10−3cm and 10−5cm
presented in Table 1.1. In contrast to Λ, it was shown in [32] that the τ∆, in units of seconds,
pertaining to the case of the larger dust particle are at least four orders of magnitude larger
than the corresponding values pertaining to the smaller dust particle. In Table 1.2 a single
size for dust particles is selected, this time login in values of τ∆x for a fixed value of ∆x.
Notice how fast these coherences dissipate, even a vacuum would decohere any positional
coherences of sizes comparable to the size of our particle S in 10−14 seconds, and these are
decoherence time scales for a dust particle of size 10−3cm. Decoherence time scales for ob-
jects much larger, or much more classical, would be many orders of magnitude smaller. This
is consistent with our day-to-day classical world experiences, in which we never perceive any
macroscopic object or mesoscopic object to be in a superposition; although the superposi-
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Figure 1.3: From Schlosshauer’s paper "Quantum Decoherence" 2019. Collisional decoherence of
a density matrix representing a Gaussian wave packet as generated by equation (1.107) with the
initial state (1.113). The images a) and b) represent |KS(x, x′, t)|2 before and after decoherence
respectively.

tions exist in theory, their lifespans are too short for us to perceive them with the naked eye.

Table 1.2: τ∆x is seconds for a large dust particle, ∆x is equal to the diameter of the particle,
and various types of scattering processes. This table is taken from [12] chapter 3 page 135.

Environment τ∆x for Dust grain, 10−3cm
Cosmic background radiation 1
Photons at room temperature 10−18

Best laboratory vacuum 10−14

Air at normal pressure 10−31

Let us now return to equation (1.112) which more generally describes the dynamics of
a free particle undergoing scattering interactions with some bosonic environments. As we
already showed, the non-unitary term will dissipate the off-diagonal terms of the density
operator ρ̂St

as time progresses; the unitary evolution term −i
[

1
2mP̂2, ρ̂St

]
from (1.112) will

then be responsible for the free spreading of the wave packet. It can be shown that the free
particle Hamiltonian has the effect of spreading localized wave packets in x ([6] chapter 6)
into highly unlocalized ones. As seen in figure 4, a symmetric Gaussian initial state will
become flat in the off-diagonal entries x = −x′ and will extend along the diagonal x = x′

which represents the probability distribution of our particles position P (x, t) := KS(x, x, t).

Short-wavelength limit

If the wavelength of the scattered environmental particles is much smaller than a coherent
separation ∆x = |x−x

′|, then these environmental particles can resolve such a separation in
a single scattering event. This in turn leads to maximum spatial decoherence per scattering
event [12] [18]. In this limit, the decay of the coherence terms of the density matrix will not
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depend on |x− x′|, instead we have

KS(x, x′, t) = KS(x, x′, 0)e−Γtott (1.114)

where Γtot is a global decoherence rate. (1.114) should not come to us as a surprise since we
have already seen it when dealing with spontaneous emission.

For both, the long-wavelength and short-wavelength limits of scattering decoherence there
is one conspicuous property of the time-evolved states. This is the narrowing that takes place
along the diagonal (x = x′) of the respective kernel. Were the off-diagonal entries to truly
vanish completely this would imply that full decoherence with respect to the position basis
had taken place. However, as the collisional model of decoherence exemplifies, energy is
needed to induce decoherence; te energy in this case is expended by the colliding photons.
Recalling that t was directly proportional to the number of photons scattered one may
deduce that it would take infinite energy to induce full decoherence (i.e.an infinite amount
of time). Furthermore, excluding the self-dynamics of the system S and the photonic field
E leads us to overlook any coherences that might ensue dynamically from the latter. If one
were to take a much more descriptive model, one that included the self-dynamics of both
S and E, then one would not see the indefinite narrowing along the diagonal of KS(x, x′, t)
as t became arbitrarily large; in lieu of this one would see a steady state solution to the
master equation arise, one with a limiting narrowing along (x = x′) which is referred to as
the limiting coherence length. A study of such models may be found in [33][34]. For many
mesoscopic physical systems which scatter light, the decoherence time scales are so small that
one may simply introduce a cut-off time T comparable to the decoherence time pertaining
to any resolvable coherences; within such a time domain the decoherence dynamics will be
approximately faithful to the actual dynamics so long as the self-dynamics of S and E are
much slower than the dynamics induced by decoherence. In order to further motivate the
collisional decoherence model we will present the Quantum Brownian Motion [32] in what
follows. We will not be solving this model nor discussing its limiting decoherence length
here.

Quantum Brownian Motion

Possibly the most celebrated decoherence model is Quantum Brownian Motion (QBM).
This is a model describing the dynamics of a particle weakly coupled to a thermal bath of
non-interacting harmonic oscillators. The self-Hamiltonian of the environment being a linear
combination of QSHOs (1.23)

HE =
∑
i

( 1
2mi

P̂2
i + 1

2miω
2
i Q̂2

i ), (1.115)

where mi and ωi are the mass and natural frequency of the ith oscillator while Q̂i and P̂i

denote the canonical positions and momenta operators. The interaction Hamiltonian is taken
to be

HI = X̂ ⊗
∑
i

ciQ̂i, (1.116)
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a bilinear coupling of the system’s position X̂ to the positions Q̂i of the environmental
oscillators. Finally, it is assumed that the system (the particle) S will have oscillatory
self-dynamics. i.e

HS = 1
2M P̂2 + 1

2MΩ2X̂2, (1.117)

where M is the mass of the particle and Ω is its natural frequency. Using the Born and
Markov approximations as well as some approximations analogous to what was done for the
case of spontaneous emission (see [12] chapter 3 and [18] chapter 3 )it can be shown that the
corresponding Master equation is the following.

∂tρ̂St
= −i

[
ĤS + 1

2M∆2X̂2, ρ̂St

]
− iγ

[
X̂,

{
P̂, ρ̂St

}]
−D

[
X̂,

[
X̂, ρ̂St

]]
− f

[
X̂,

[
P̂, ρ̂St

]]
.

(1.118)
Following [32], we present below a list defining all of the constants present in such a master
equation where J(ω) is the spectral density of the environment.

• ν(τ) =
∫∞

0 dωJ(ω) coth( ℏω
2kBT

)cos(ωτ), noise-kernel.

• η(τ) =
∫∞

0 dωJ(ω) sin(ωτ), dissipation kernel.

• ∆2 = − 2
M

∫∞
0 dτη(τ) cos(Ωτ), the square of the shifted natural frequency of the particle.

• γ = 2
MΩ

∫∞
0 dτη(τ) sin(Ωτ), damping rate due to dissipation effects.

• D = 1
ℏ
∫∞

0 dτν(τ) cos(Ωτ), scattering constant analogous to Λ in the previous section.

• f = − 1
MΩ

∫∞
0 dτν(τ) sin(Ωτ), also represents decoherence but usually negligible, espe-

cially at high temperatures.

It can be shown dispersion in position may be given by (∆X̂)2(t) = D
2m2γ2 t [12] [32] [18].

The ensemble width ∆X̂(t) (the variance of the operator X̂ with respect to the state ρ̂St
)

therefore scales asymptotically as
√
t which is the scaling behavior seen in classical Brownian

motion, hence the name QBM [32]. Notice that in the regime where dissipation affects, γ,
and low-temperature effects, f , may be neglected (1.118) is approximately the collisional
decoherence master equation seen in (1.112), but now with a QSHO self-Hamiltonian for the
system S. However, if the mass of the S is large enough, then ĤS may be approximated by
a free-particle Hamiltonian. We, therefore, see that collisional decoherence (1.107) is just a
special case of the QBM model (1.118). It is in this sense that the interaction von Neumann
(quantum measurement regime [32]) interaction Hamiltonian HI = X̂ ⊗∑

i ciQ̂i, which will
be the regime of focus for the main work in this thesis, is seen as physically viable. i.e. in
the sense that ĤI ≈ Ĥtot, where Ĥtot is the total QBM Hamiltonian for appropriate time
domains.

1.6.3 Multipartite Open Quantum Systems
Let HS ⊗ ⊗N

k=1 HEk be some arbitrary tensor product Hilbert space. Let us consider a
separable density operator as the initial state of some multipartite quantum system evolving
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in S
(
HS ⊗⊗N

k=1 HEk

)
, namely

ρ̂ = ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0 ∈ S

(
HS ⊗

N⊗
k=1

HEk

)
. (1.119)

Here we consider a quantum system S interacting with N macroscopic environments Ek;
we write the subscript 0 in Ek

0 in order to emphasize that this is the initial state of the
kth environment Ek, similarly, we use the subscript S0 to highlight the initial state of the
system S. We will assume that the time evolution of (1.119) lies within the quantum-
measurement limit regime [32], i.e. Ĥtot ≈ Ĥint. Let us assume a von Neumann type
interaction Hamiltonian (this definition is taken from [18]). i.e.

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (1.120)

where the operators X̂ and B̂k above are respectively the position operator and some arbi-
trary observable; each acting on its respective Hilbert space, i.e. all of the B̂k act on different
Hilbert spaces. The constants gk are coupling strengths between the position operator X̂
of S and the observable B̂k of the kth environment Ek.The corresponding time evolution
operator is therefore

Ût = e−itX̂⊗
∑N

k=1 gkB̂k . (1.121)
We evolve our total initial state using the evolution operator (1.121).

ρ̂t =
(
e−itX̂⊗

∑N

k=1 gkB̂k

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

(
eitX̂⊗

∑N

k=1 gkB̂k

)
. (1.122)

We will now do something which is divergent from the methods applied up until now for the
study of quantum open systems. Rather than trace out all of the environmental degrees of
freedom, we shall be tracing out only a subset of these. i.e. we shall be studying the state
of the subsystem formed by the system S and the first NE environments. We shall take the
partial trace of the time-evolved density operator (5.4) over the remaining ME := N − NE

environments. We present this partial trace as a lemma.
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Lemma 1.6.1 (Particular Partial Trace)

TrENE+1,ENE+2,...,EN

{
ρ̂t
}

= UNE ,t

(
Et
(
ρ̂s
)

⊗
NE⊗
k=1

ρ̂E
k
0

)
. (1.123)

Where
Un,t

(
Â
)

:= e−itX̂⊗Ŝn

(
Â
)
eitX̂⊗Ŝn (1.124)

Ŝn :=
n∑
k=1

gkB̂k (1.125)

and
EME
t {σ̂} :=

∫ ∫
⟨x|σ̂|y⟩ΓME

(t, x, y)|x⟩⟨y|dxdy. (1.126)

where
ΓME

(t, x, y) :=
N∏

k=NE+1
Trk

{
e−itxgkB̂k ρ̂E

k
0 eitygkB̂k

}
(1.127)

ME = N −NE, the number of traces being taken in equation (1.127).

Proof.
TrENE+1,ENE+2,...,EN

{
ρ̂t
}

= (1.128)

TrENE+1,ENE+2,...,EN

{
e−itX̂⊗

∑N

k=1 gkB̂k

ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0

eitX̂⊗
∑N

k=1 gkB̂k

}
= (1.129)

UNE ,t

TrENE+1,ENE+2,...,EN

{
e

−itX̂⊗
∑N

k=NE+1 gkB̂k

ρ̂S0⊗
N⊗

k=NE+1
ρ̂E

k
0

eitX̂⊗
∑N

k=NE+1 gkB̂k

}
NE⊗
k=1

ρ̂E
k
0


(1.130)

Let us now use the generalized eigenvectors of X̂ in order to write ρ̂S =
∫ ∫

KS(x, y)|x⟩⟨y|dxdy
where KS(x, y) = ⟨x|ρ̂S|y⟩. Using the latter,

e
−itX̂⊗

∑N

k=NE+1 gkB̂k

ρ̂S0 ⊗
N⊗

k=NE+1
ρ̂E

k
0

eitX̂⊗
∑N

k=NE+1 gkB̂k = (1.131)

∫ ∫
KS(x, y)|x⟩⟨y|

(
e

−itx
∑N

k=NE+1 gkB̂k

 N⊗
k=NE+1

ρ̂E
k
0

eity∑N

k=NE+1 gkB̂k

)
dxdy = (1.132)

∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itxgkB̂k ρ̂E
k
0 eitygkB̂kdxdy. (1.133)

Furthermore

TrENE+1,ENE+2,...,EN

{∫ ∫
KS(x, y)|x⟩⟨y| ⊗

N⊗
k=NE+1

e−itxgkB̂k ρ̂E
k
0 eitygkB̂kdxdy

}
= (1.134)
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∫ ∫
KS(x, y)|x⟩⟨y|TrENE+1,ENE+2,...,EN

{
N⊗

k=NE+1
e−itxgkB̂k ρ̂E

k
0 eitygkB̂k

}
dxdy = (1.135)

∫ ∫
KS(x, y)ΓME

(t, x, y)|x⟩⟨y|dxdy = EME
t

(
ρ̂S0

)
(1.136)

Finally, using (1.130) and (1.136), we have

(1.130) = UNE ,t

EME
t

(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

 (1.137)

The density operators (1.137) describe a simple case of a multipartite open quantum
system. We call them simple because there are no interactions between the environmental
degrees of freedom. Such states are useful for the description of multiple observer monitor-
ing states; these are states where each of the environmental degrees of freedom in (1.137)
represent some physical system that the kth observer conducts measurements on in order
to indirectly learn about the system S [29]. The dynamics of states of the form (1.137) will
be the primary focus of this thesis; in particular, we shall be interested in answering the
question of whether or not such a state converges to a so-called SBS state within some time
domain of interest (See Chapters 5 and 6).



Chapter 2

Quantum Maps, Distance Measures,
and Inequalities.

This chapter is dedicated to introducing and motivating many of the tools that will be
needed in proving the main results of this thesis. The three topics to be discussed here are
quantum maps, distance measures, and relevant inequalities. Quantum maps play a key role
in open quantum systems; these are maps that take density operators as inputs and return
density operators as outputs whilst accounting for effects such as dissipation, decoherence,
unitary evolution, and even a combination of all these. In close quantum systems, one
encounters such maps when solving the LV equation. The solutions to this equation are
a density operator which has been unitarily evolved from some initial state (1.30); such
evolution is a basic example of a quantum map. In open quantum systems the notion of a
quantum map is more nuanced due to its various applications. We will begin this chapter
by formally defining the notion of a quantum map and discussing physical motivations. We
will then continue with a discussion on various norm and metric inequalities that we shall be
needing to study proximity between density operators being evolved by different quantum
maps respectively; this will play a key role in the rest of this thesis.

2.1 Quantum Maps

Let us right away define a quantum map. We follow closely the definition presented in [9]
(where the terminology quantum operation is used in lieu of quantum map.).

49
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Definition 2.1.1 (Quantum Map)

Let H1 and H2 be two arbitrary Hilbert spaces. We define a quantum map E as a
map from the set of density operators of the input space S

(
H1

)
to the set of density

operators for the output space S
(
H2

)
, with the following three axiomatic properties.

• A1: Tr
{
E
(
ρ̂
)}

is the probability that the process E occurs, when the ρ̂ is in
the initial state. Thus, 0 ≤ Tr

{
E
(
ρ̂
)}

≤ 1 for any state ρ̂.

• A2: E is a convex-linear map on the set of density operators, i.e. for a probability
distribution {pi},

E
(∑

i

piρ̂i

)
=
∑
i

piE
(
ρ̂i
)

(2.1)

• A3: E is a completely positive map. i.e., if E maps density operators of S
(
H1

)
to density operators of S

(
H2

)
, then E

(
Â
)

must be positive for any positive
operator Â. Furthermore, let H3 a third arbitrary Hilbert space. It must then
be true that

(
I ⊗ E

)(
Â
)

is positive for any positive operator Â ∈ B
(
H1 ⊗ H3

)
where I is the identity map on B

(
H1

)
.

In mundane terms, quantum maps are maps that respect the rules of quantum mechanics.
Perhaps with the exception of the second half of A3, all of the properties in Definition
2.1.1 are quite natural. To understand the completely positive criteria let us first convince
ourselves that complete positivity is more restrictive than positivity. Let ρ̂ ∈ S

(
C2
)
, using

the basis
{∣∣∣0〉〈0∣∣∣, ∣∣∣1〉〈1∣∣∣} we have the following representation

ρ̂ = a
∣∣∣1〉〈1∣∣∣+ b

∣∣∣0〉〈0∣∣∣+ c
∣∣∣1〉〈0∣∣∣+ c∗

∣∣∣0〉〈1∣∣∣. (2.2)

From basic linear algebra, we know that a matrix and its transpose have the same eigenvalues,
T
(
ρ̂
)

:= ρ̂T is therefore also a positive operator. The transpose of a matrix is hence a
positive map. Now, consider the density operator

σ̂ := 1
2

(∣∣∣00
〉〈

00
∣∣∣+ ∣∣∣00

〉〈
11
∣∣∣+ ∣∣∣11

〉〈
00
∣∣∣+ ∣∣∣11

〉〈
11
∣∣∣) ∈ S

(
C2 ⊗ C2

)
(2.3)

where
∣∣∣00
〉

is shorthand for
∣∣∣0〉⊗

∣∣∣0〉. Acting on (2.3) with the map T ⊗ I, which executes
a transpose in the subspace pertaining to the left-hand side of the tensor products

∣∣∣0〉⊗
∣∣∣0〉

... etc, while I is the identity map of the complementary subspace,
(
T ⊗ I

)(
σ̂
)

= 1
2

(∣∣∣00
〉〈

00
∣∣∣+ ∣∣∣10

〉〈
01
∣∣∣+ ∣∣∣01

〉〈
10
∣∣∣+ ∣∣∣11

〉〈
11
∣∣∣). (2.4)

This matrix is known to have eigenvalues 1
2 and −1

2 , which means that it is not a positive
matrix. We, therefore, see that complete positivity is a stronger condition than positivity.
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We have yet to motivate why complete positivity is compulsory. The physical motivation is
this. In quantum open systems, dynamics will be generated by quantum maps. Consider
some time-dependent trace-preserving quantum map Et, i.e. this map will be a bonafide
trace-preserving quantum map for all t > 0. Let this map evolve a quantum system S1. One
can embed such an open quantum system into a larger quantum open system, now including
another system S2 which is static in time and does not interact with S1. The total dynamics
of this larger quantum open system will now be described by Et ⊗ I where I is the identity
quantum map of the subsystem S2. The map Et ⊗ I will of course be expected to map the
density operator to another density operator, it will be a positive map, hence the necessity
for complete positivity.

In the previous chapter, we alluded to the fact that environmentally induced non-unitary
dynamics (1.69) characterized by a family of identity-resolving operators (1.76), called Kraus
operators, constitutes a quantum map. We have already seen examples of such maps and
have seen that they respect the rules of quantum mechanics. Nevertheless, it would be a
worthwhile exercise to prove that the axioms A1 − A3 of Definition 2.1.1 are satisfied by
maps generated by a family of Kraus operators (1.75).

Let H be some arbitrary Hilbert space and let ρ̂ ∈ S
(
H1

)
. Now, let

{
M̂i

}
i

∈ B
(
H1

)
be a family of Kraus operators, i.e. ∑

i M̂
†
iM̂i = I1, then the map E

(
ρ̂
)

:= ∑
i M̂iρ̂M̂†

i

satisfies A1 − A3 of Definition 2.1.1. A1 is trivial to verify; the key element in the proof is
the cyclicity of the trace (1.33).

Tr{E
(
ρ̂
)
} = Tr

{∑
i

M̂iρ̂M̂†
i

}
=
∑
i

Tr
{
M̂iρ̂M̂†

i

}
=
∑
i

Tr
{
M̂†

iM̂iρ̂
}

= (2.5)

Tr
{∑

i

M̂†
iM̂iρ̂

}
= Tr

{
ρ̂
}

= 1. (2.6)

Proving A2 is also simple. Let
{
pi, ρ̂i

}
i

be an ensemble of density operators, then

E
(∑

i

piρ̂i

)
=
∑
j

M̂j

(∑
i

piρ̂i

)
M̂†

j =
∑
i

pi
∑
j

M̂jρ̂iM̂
†
j =

∑
i

piE
(
ρ̂i
)
. (2.7)

Finally, and most importantly, we will prove A3. We will first prove positivity. Let
∣∣∣ψ〉 ∈ H1,〈

ψ
∣∣∣∑

i

M̂iρ̂M̂†
i

∣∣∣ψ〉 =
∑
i

〈
ψ
∣∣∣M̂iρ̂M̂†

i

∣∣∣ψ〉 =
∑
i

〈
ϕi
∣∣∣ρ̂∣∣∣ϕi〉 ≥ 0 (2.8)

where
∣∣∣ϕi〉 is the image of M̂ acting on

∣∣∣ψ〉. Owing to the positivity of ρ̂, all of the elements
of the sum ∑

i

〈
ϕi
∣∣∣ρ̂∣∣∣ϕi〉 will be positive, leading us to conclude that E

(
ρ
)

is positive (2.8).
To show complete positivity we first let H3 be an arbitrary Hilbert space and let

∣∣∣η〉 ∈
B
(
H1 ⊗ H3

)
. Furthermore, consider an arbitrary positive operator Â ∈ B

(
H1 ⊗ H3

)
.

Then, 〈
η
∣∣∣(I ⊗ E

)(
Â
)∣∣∣η〉 =

〈
η
∣∣∣∑

i

(
I1 ⊗ M̂i

)
Â
(
I1 ⊗ M̂†

i

)∣∣∣η〉 = (2.9)
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∑
i

〈
η
∣∣∣(I1 ⊗ M̂i

)
Â
(
I1 ⊗ M̂†

i

)∣∣∣η〉 (2.10)

Letting
∣∣∣χi〉 :=

(
I1 ⊗ M̂i

)∣∣∣η〉 ( a ket in H1 ⊗ H3) we see that (2.10) is just
∑
i

〈
χi
∣∣∣Â∣∣∣χi〉 ≥ 0 (2.11)

which is obviously a quantity greater than or equal to one owing to the positivity of Â. Since
the family of identity-resolving operators M̂i were taken to be general, we have actually
proven that all trace-preserving (also known as quantum channels [9]), identity-resolving
families of operators

{
M̂i

}
i
generate a quantum map. We have therefore proven one direction

of the following theorem.

Theorem 2.1.1 (Quantum Channel Representation)

A trace-preserving map E is a quantum channel (i.e. trace-preserving) if and only if

E (ρ̂) =
∑
i

M̂iρ̂M̂†
i , (2.12)

for some set of operators
{
M̂i

}
i

which map the input Hilbert to the output Hilbert
space, and ∑i M̂

†
iM̂i = I

For the cases where we consider maps E which do not preserve the trace, Theorem 2.1.1
may be adapted to the following.

Theorem 2.1.2 (Quantum Map Representation)

A map E is a quantum map if and only if

E (ρ̂) =
∑
i

M̂iρ̂M̂†
i , (2.13)

for some set of operators
{
M̂i

}
i

which map the input Hilbert space to the output
Hilbert space, and 0 ≤ ∑

i M̂
†
iM̂i ≤ I

Note that the case where there is only one operator M̂i pertains to the unitary map case.
i.e. if there is only one M̂i, namely M̂, and we require that M̂†M̂ = I, then forcibly M̂ will
be a unitary operator. In section 1.5 we saw that open systems evolve non-unitarily via the
quantum map generated by the Kraus operators obtained from the partial tracing over the
environmental degrees of freedom E. The Kraus operators were shown to have the identity
resolution property (1.76); therefore preserving positivity and the unit trace property. More
generally, the family {Mi}i does not need to be countable. i.e. we could have a quantum
map defined as F

(
ρ̂
)

:=
∫

M̂xρ̂M̂†
xdx. Such a map may be easily shown to preserve the

unit trace and positivity properties.
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GKSL Generator

There are cases where a time-dependent quantum map Et, such as the ones generating
non-unitary evolution discussed in the previous section, will satisfy the following semigroup
properties.

• Et is strongly continuous.

• EtEs = Et+s, for al t, s ≥ 0

When the above properties are satisfied, one may invoke the celebrated Hille-Yosida theorem
[45] which states that there exists a densely defined generator L defined as

Lρ̂ := lim
t→0

1
t

(
Et
(
ρ̂
)

− ρ̂
)

(2.14)

such that
∂tEt = LEt (2.15)

together with the initial condition limt→0 Etρ̂ = ρ̂. For unitary dynamics the generators L
will just be those generated by some Hamiltonian. However, in the non-unitary case L may
be the GKSL super operator that we have already seen in (1.85). i.e.

L
(
...
)

:= −i
[
ĤS, ...] +

∑
i

γi

(
L̂i

(
...
)
L̂†
i − 1

2

{
L̂†
i L̂i, ...

})
. (2.16)

We now see the tightly knitted connection between the GKSL equation and quantum maps,
and may further appreciate the significant role that quantum maps play when modeling
general quantum dynamics.

2.2 Quantum Map Examples
We will now present various examples of quantum maps, some of which we have seen

already, highlighting their quantum map properties, and others which we will see in what is
to come.

2.2.1 Phase Kick Decoherence
Let HS = C2, and consider the an arbitrary state

∣∣∣ψ〉 ∈ C2. i.e.
∣∣∣ψ〉 = a

∣∣∣0〉 + b
∣∣∣1〉 where∣∣∣0〉 and

∣∣∣1〉 are the eigenvetcors of the Pauli matrix σ̂z. Such a state may experience an
environmental kick emanating from environmental particles which interact deterministically
with S. Such a kick may be generated by the unitary operator R̂z(θ) := e− iθ

2 σ̂z ; in this case
the kick is a rotation along the z-axis of the Bloch-Sphere by θ degrees [9] [15]. Assuming
that some experimentalist is taking a measurement of S, subsequently after the phase kick,
has no knowledge of the state of the environment interacting with S. Furthermore, assume
that the statistics of the parameter θ are µθ = 0 and σθ =

√
2λ. The experimentalist would
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then be conducting measurements on the state

ρ̂λ := 1√
4πλ

∫ ∞

−∞
R̂z(θ)

∣∣∣ψ〉〈ψ∣∣∣R̂†
z(θ)e− θ2

4λdθ. (2.17)

Notice that (2.17) has the structure which is necessary and sufficient to generate a quantum
map per Theorem 2.1.1. In this case, the Kraus operators consists of the θ dependent family
e− θ2

8λ R̂z(θ), where θ ∈ R. Notice that the identity resolution property is easily verified.

1√
4πλ

∫ ∞

−∞
R̂z(θ)R̂†

z(θ)e− θ2
4λdθ =

( 1√
4πλ

∫ ∞

−∞
e− θ2

4λdθ
)
I = I (2.18)

Furthermore, it can easily be shown that

ρ̂λ = |a|2
∣∣∣0〉〈0∣∣∣+ |b|2

∣∣∣1〉〈1∣∣∣+ ab∗e−λ
∣∣∣1〉〈0∣∣∣+ a∗be−λ

∣∣∣0〉〈1∣∣∣ (2.19)

which clearly exhibits the damping of the off-diagonal terms, a phenomenon characteristic
of decoherence. If λ is large this in turn will mean that the randomness in the environment
is large; if λ is arbitrarily large all quantumness (Definition 1.3.4) is wiped out prior to the
experimentalist’s interacting with S.

2.2.2 Colisional Decoherence as a Quantum Semigroup
In the previous chapter, we studied collisional quantum decoherence (1.104). Clearly, such
a model induces time evolution which follows the rules of quantum mechanics. Therefore,
(1.104) should be representable in the form required by Theorem 2.1.1. Let us start by
rewriting (1.104) in a more suggestive way.∫ ∫

ϕ(x)ϕ∗(x′)e−Λt(x−x′)2
∣∣∣x〉〈x′

∣∣∣dxdx′ = (2.20)

∫ ∫
ϕ(x)ϕ∗(x′)

( ∫
R

√
π

tΛe
− π2

tα
ξ2
e−2πiξ(x−x′)dξ

)∣∣∣x〉〈x′
∣∣∣dxdx′ (2.21)

√
π

tΛ

∫
R
e− π2

tα
ξ2

∫ ∫
ϕ(x)ϕ∗(x′)e−2πiξ(x−x′)

∣∣∣x〉〈x′
∣∣∣dxdx′

dξ (2.22)

√
π

tΛ

∫
R
e− π2

tα
ξ2

e−2πiξX̂
∫ ∫

ϕ(x)ϕ∗(x′)
∣∣∣x〉〈x′

∣∣∣dxdx′e2πiξX̂

dξ (2.23)

√
π

tΛ

∫
R
e− π2

tα
ξ2

e−2πiξX̂
∣∣∣ϕ〉〈ϕ∣∣∣e2πiξX̂

dξ (2.24)

∫
R

(
4

√
π

tΛe
− π2

2tα
ξ2
e−2πiξX̂

)∣∣∣ϕ〉〈ϕ∣∣∣( 4

√
π

tΛe
− π2

2tα
ξ2
e2πiξX̂

)
dξ (2.25)

where
∣∣∣ϕ〉 :=

∫
ϕ(x)

∣∣∣x〉dx.
The density operator (2.24) is now confirmed as the non-unitary evolution of the pure
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state
∣∣∣ϕ〉〈ϕ∣∣∣ by the quantum map defined by the Kraus operators 4

√
π
tΛe

− π2
2tα

ξ2
e−2πiξX̂. The

density operator (2.24) is very much like the density operator we saw in the previous example
( 2.17) in the sense that they are both averages of unitary dynamics (which result in non-
unitary dynamics).

2.2.3 POVM

We have already seen plenty examples of how the environment induces non-unitary dynam-
ics onto some system of interest S. It is an inherent property of measurement processes for
the measurer to disturb the system being measured. For classical systems, these disturbances
are often inconsequential. However, in quantum mechanics, one works with systems whose
observable properties are much more susceptible to disturbance. Measurement is hence natu-
rally described by quantum maps generated by a Positive Operator Valued Measure (POVM)
defined below. The difference between a POVM and a family of Kraus operators is simply
that the Kraus operators generating the POVM are positive semidefinite operators. From
the point of view of POVM measurement theory, one may therefore consider environmentally
induced decoherence and/or dissipation as a form of measurement performed by the envi-
ronment, we will call this environmental monitoring. A subset of these POVM corresponds
to the case of Projector-Valued Measures (PVM). The theory of quantum measurement as
developed by von Neumann utilizes solely PVM [18].

Definition 2.2.1 (POVM)

Consider an arbitrary Hilbert space H . A POVM is a set of semi-definite operators{
M̂†

iM̂i

}
i

acting in H that sum to the identity operator. i.e.
∑
i

M̂†
iM̂i = IH (2.26)

The POVM may consist of an uncountable set of semi-definite operators as well. In
such a case the analogous set of operators, e.g. M̂x (x ∈ R) must meet the same
constraint. i.e. ∫

M̂†
xM̂xdx = IH (2.27)
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Definition 2.2.2 (Quantum Measurement)

Consider a POVM {M̂†
iM̂i}i acting in some Hilbert space of arbitrary dimension.

Furthermore, consider a density operator ρ̂ which acts in the same Hilbert space. Given
a quantum system in state ρ̂, the theory of quantum probability treats the M̂†

iM̂i as
events, while the traces pi := Tr{ρ̂M̂†

iM̂i} are postulated to be the probabilities of
the i the event occurring after conducting a measurement on the system designed to
read out the events modeled by the POVM. The operators M̂i are therefore Kraus
operators of a quantum map. If one conducts a measurement on the quantum state
ρ̂ and the outcome is that which is indexed by i, then the post-measurement state is
postulated to be

M̂iρ̂M̂†
i

Tr
{
M̂iρ̂M̂†

i

} (2.28)

The state above is the resulting state assuming that one has "read out" the measure-
ment. However, if one does not read out the results of the measurement, what one has
is a mixture ∑

i

pi
M̂iρ̂M̂†

i

Tr
{
M̂iρ̂M̂†

i

} (2.29)

Given that pi = Tr{Êiρ̂}, the unread state of the system is

∑
i

pi
M̂iρ̂M̂†

i

Tr
{
M̂iρ̂M̂†

i

} =
∑
i

Tr
{
M̂iρ̂M̂†

i

} M̂iρ̂M̂†
i

Tr
{
M̂iρ̂M̂†

i

} =
∑
i

M̂iρ̂M̂†
i . (2.30)

The map (2.30) is clearly a quantum map.

Definition 2.2.3 (von Neumann Measurement)

The theory of von Neumann Measurement is just the theory of quantum measurement
described above but specialized to the case where the POVM in question are Projector
Valued Measures (PVM).

2.2.4 Weak Measurement as an Example of POVM Measurement
An observer monitoring the system S may have at their disposal a POVM that measures

the spectrum of the position operator X̂, however, due to resolution limitations one expects
that any realizable POVM will have finite precision. An example of a viable POVM for esti-
mating the position of some quantum mechanical object can be constructed from Gaussian
functions as follwos.

M̂q = (2πσ2)−1/4
∫
e− (q−x′)2

4σ2
∣∣∣x′
〉〈
x′
∣∣∣dx′. (2.31)

Note that this family of projectors forms a resolution of the identity.∫
M̂†

qM̂qdq = I.
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We will refer to the parameter σ−1 as the measurement precision. It can be shown that
limσ→0 M

†
qMq =

∣∣∣q〉〈q∣∣∣ and limσ→∞ M †
qMq = I in the weak sense; these are the max and

min precision limits. For finite and/or large values of σ we enter what is known as the
weak measurement regime. For a detailed discussion regarding weak measurement theory
please see [56]; the interested reader may also look at the theory of Gentle Measurement
[11] which generalizes weak measurement. We will be interested in measurements that are
approximately non-disturbing, for the case of continuous variables we will adopt the Gentle
Measurement Principle [11] to define approximate non-disturbance. i.e. a measurement is
non-disturbing if a set of states can be distinguished with high probability; i.e. they can, in
principle, be distinguished by a measurement that does not disturb the state. Indeed, for a
given infinite dimensional state matrix ρ̂ with kernel K, using the POVM {M̂q}q we have

∫
M̂†

qρ̂M̂qdq = (2πσ2)− 1
2

∫ 
∫ ∫

e− (q−x)2

4σ2 e− (q−y)2

4σ2 K(x, y)
∣∣∣x〉〈y∣∣∣dxdy

dq = (2.32)

=
∫ ∫ (2πσ2

ms)− 1
2

∫
e− (q−x)2

4σ2 e− (q−y)2

4σ2 dq

K(x, y)
∣∣∣x〉〈y∣∣∣dxdy = (2.33)

=
∫ ∫

e− (x−y)2

8σ2 K(x, y)|x⟩⟨y|dxdy ≈
∫ ∫

K(x, y)|x⟩⟨y|dxdy σ → ∞ (2.34)

σ need not be infinite for the latter approximation to be valid, it need only be large enough
to maintain the decoherence kernel above approximately constant within the support of
K(x, y). The larger σ is the weaker the effects of the quantum map generated by the Kraus
operator M̂q will be.

2.3 Quantifying Disturbance/Noise with the Trace Dis-
tance

To quantify how much a quantum map disturbs an arbitrary quantum state, we will be
using the trace distance. We will define the trace distance shortly, but before this, we need
to define the trace norm.

Definition 2.3.1 (Trace Norm)

Let H be an arbitrary Hilbert space and let ρ̂ ∈ S
(
H
)

. Then, the trace norm of ρ̂
is defined as ∥∥∥ρ̂∥∥∥

1
:= Tr

{√
ρ̂†ρ̂

}
(2.35)

Now we define the trace distance.
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Definition 2.3.2 (Trace Distance)

Let H be an arbitrary Hilbert space and let ρ̂ and σ̂ ∈ S
(
H
)
. The trace distance

between the density operators ρ̂ and σ̂ is defined as follows.

D
(
ρ̂, σ̂

)
:= 1

2
∥∥∥ρ̂ − σ̂

∥∥∥
1

(2.36)

Although structurally simple, the trace distance is generally intractable for the same
reasons solving the Schrödingers question is (1.1), i.e. the complexity of the eigenvalue
problem. To see this more clearly let us look back at equation (1.49) and the preceding
discussion. For the case of density operators, the trace is equal to the trace norm so the
situation is simpler because we do not need to worry about taking a square root of an operator
as required by Definition 2.3.1. In the best of cases, we know the entire spectrum and we
are done! However, differences of density operators ρ̂ − σ̂ will not be positive operators in
general and will yield further complexity when computing the trace norm. In fact, even if
we know the spectral decomposition of ρ̂ and σ̂ respectively, this does not mean that we
will know the spectral decomposition of ρ̂ − σ̂, i.e. not unless

[
ρ̂, σ̂

]
= 0. ρ̂ − σ̂ is also a

trace class operator, the spectral theory for compact operators, therefore, tells us that there
exists a basis

{∣∣∣ϕi〉}
i

that diagonalizes ρ̂ − σ̂. With such a basis it can be shown that
∥∥∥ρ̂ − σ̂

∥∥∥
1

=
∑
i

|λi
(
ρ̂ − σ̂

)∣∣∣. (2.37)

Finding the eigenvectors
{∣∣∣ϕ〉

i

}
i

is nevertheless a complicated affair, as already discussed in
Chapter 2, and should be avoided if possible. The only case for which the trace distance
may be easily calculated is when both ρ̂ and σ̂ are pure states. We present this result as a
lemma.

Theorem 2.3.1 (Trace Distance of Two Pure States [9])

Consider two pure states
∣∣∣ψ〉〈ψ∣∣∣ and

∣∣∣ϕ〉〈ϕ∣∣∣. Their trace distance is the following.

D
(∣∣∣ψ〉〈ψ∣∣∣, ∣∣∣ϕ〉〈ϕ∣∣∣) =

√
1 −

∣∣∣〈ψ∣∣∣ϕ〉∣∣∣2 (2.38)

In the finite-dimensional case, dim
(
H
)
< ∞, it is helpful to note that the trace norm

is equivalent any other Schatten norm, e.g. the Hilbert-Schmidt norm [9].
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Definition 2.3.3 (Schattern Norms [48])

Let H be an arbitrary Hilbert space and let ρ̂ ∈ S
(
H
)
. The p−Schatten norm is

defined as. ∥∥∥ρ̂∥∥∥
p

:= p

√√√√Tr{(√ρ̂†ρ̂

)p}
(2.39)

An interesting property of the Trace Idelas [48] corresponding to the respective Schatten
norms

∥∥∥...∥∥∥
p

is that they satisfy an operator version of Hölders inequality. Namely, the
following theorem.

Theorem 2.3.2 (Schatten-Hölder)

Let H be an arbitrary Hilbert space and let ρ̂ ,σ̂ ∈ S
(
H
)
. Then,

∥∥∥ρ̂σ̂
∥∥∥

1
≤
∥∥∥ρ̂∥∥∥

q

∥∥∥σ̂∥∥∥
p

(2.40)

whenever 1
p

+ 1
q

= 1.

These Schatten norms induce a metric, and for the finite-dimensional case, they are all
equivalent in the following sense. Let ρ̂ and σ̂ be two finite-dimensional density operators.
Then, for all p and q, there exists constants C1 and C2 such that

C1∥ρ̂ − σ̂∥p ≤ ∥ρ̂ − σ̂∥q ≤ C2∥ρ̂ − σ̂∥p. (2.41)

The constants depend on p, q and on the dimension of the Hilbert space the operators ρ̂ and
σ̂ act in. The Hilbert-Schmidt norm is the case where p = 2. i.e.

∥∥∥ρ̂∥∥∥
2

=
√
Tr
{
ρ̂†ρ̂

}
. Notice

that even if we do not have knowledge of the spectral decomposition of the operator ρ̂, we may
nevertheless easily compute ρ̂†ρ̂ and subsequently calculate the sum of the diagonal terms
in order to obtain the trace; so long as we have a representation of ρ̂, it is relatively simple
to proceed. This equivalence between the Schatten norms in the finite-dimensional case
allows us to estimate trace norms without worrying about the square root in the definition
of the trace norm. This approach is unfortunately not viable for the infinite-dimensional
case; when dim

(
H
)

= ∞ there is no longer equivalence amongst Schatten norms. What is
more restrictive is that for an arbitrary trace class operator Â,∥∥∥Â∥∥∥ ≤ ... ≤

∥∥∥Â∥∥∥
2

≤
∥∥∥Â∥∥∥

1
. (2.42)

This means that we have little room to estimate the trace norm; any of the popular trace
norm bounds will require us to estimate an equivalently difficult quantity. One of the most
popular bounds for the trace distance is the following [9]

1 −
√
F
(
ρ̂, σ̂

)
≤ 1

2
∥∥∥ρ̂ − σ̂

∥∥∥
1

≤
√

1 − F
(
ρ̂, σ̂

)
(2.43)
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where F
(
..., ...

)
is the quantum fidelity defined as follows.

Definition 2.3.4 (Quantum Fidelity)

Let H be an arbitrary Hilbert space and let ρ̂ ,σ̂ ∈ S
(
H
)
. The quantum fidelity

between ρ̂ and σ̂ is defined as

F
(
ρ̂, σ̂

)
:=
∥∥∥√ρ̂

√
σ̂
∥∥∥2

1
(2.44)

or equivalently
F
(
ρ̂, σ̂

)
:= Tr

{√√
ρ̂σ̂

√
ρ̂
}2

(2.45)

Notice that the quantum fidelity is no simpler to compute than the trace distance in
general. However, when at least one of the states ρ̂, σ̂ is pure, the calculation is simpler.
i.e.

F
(∣∣∣ψ〉〈ψ∣∣∣, σ̂) = |

〈
ψ
∣∣∣σ̂∣∣∣ψ〉|. (2.46)

The fidelity for two pure states is therefore

F
(∣∣∣ψ〉〈ψ∣∣∣, ∣∣∣ϕ〉〈ϕ∣∣∣) = |

〈
ψ
∣∣∣ϕ〉|2. (2.47)

2.3.1 Contractivity of Quantum Maps.
An important result exhibiting the effects of quantum maps on a trace distance is

Theorem 2.3.3 (Contractivity of Quantum Maps)

Let ρ̂ and σ̂ be two density operators and E a quantum map acting on these states.
Then,

D
(
E (ρ̂),E (σ̂)

)
≤ D

(
ρ̂, σ̂

)
(2.48)

2.3.2 Disturbance due to a Quantum Map
How can one tell if a quantum map preserves information? Assume that we have some

density operator ρ̂ ∈ S
(
H
)
, H arbitrary, and some quantum map E : S

(
H
)

→ S
(
H
)
.

If the trace distance D
(
ρ̂,E (ρ̂)

)
= 0, then this means that the operators ρ̂ and ρ̂ are

indistinguishable!

Proof. Let D
(
ρ̂,E (ρ̂)

)
= 0 and assume that ρ̂ ̸= E (ρ̂), i.e. ρ̂−E (ρ̂) ̸= 0 ( the zero operator

acting in H ). Note that D
(
ρ̂,E (ρ̂)

)
= 0 implies that

∑
i

∣∣∣λi(ρ̂ − E (ρ̂)
)∣∣∣ = 0 (2.49)
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This implies that all of the eigenvalues λi
(
ρ̂−E (ρ̂)

)
= 0. Owing to the fact that the operator

ρ̂ − E (ρ̂) ̸= 0 is trace class, we may write any vector in H as a linear combination of the
eigenvectors of ρ̂ − E (ρ̂) (call them

{∣∣∣ϕi〉}
i
). This means that for any

∣∣∣ψ〉 ∈ H

(
ρ̂ − E (ρ̂)

)∣∣∣ψ〉 =
(
ρ̂ − E (ρ̂)

)∑
i

ci
∣∣∣ϕi〉 =

∑
i

0 × ci
∣∣∣ϕi〉 = 0. (2.50)

Hence
ρ̂
∣∣∣ψ〉 = E (ρ̂)

∣∣∣ψ〉, (2.51)

which is a contradiction! We hence conclude that D
(
ρ̂,E (ρ̂)

)
= 0 implies that ρ̂ = E

(
ρ̂
)
.

For the finite-dimensional case, one may always utilize the Hilbert-Schmidt distance
in lieu of the trace-distance in order to forgo the eigenvalue problem. For the infinite-
dimensional case, we will have to get creative.

Disturbing pure states

A relatively simple case of disturbance estimation pertains to the case where the initial
state is pure and the quantum map in question is trace-preserving. i.e. we begin with
some density operator of the form

∣∣∣ψ〉〈ψ∣∣∣. To estimate how much E disturbs
∣∣∣ψ〉〈ψ∣∣∣ let us

compute the trace distance. Here, using (2.43),

D
(∣∣∣ψ〉〈ψ∣∣∣,E (∣∣∣ψ〉〈ψ∣∣∣)) ≤

√
1 − F

(∣∣∣ψ〉〈ψ∣∣∣,E (∣∣∣ψ〉〈ψ∣∣∣)) =
√

1 −
∣∣∣〈ψ∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)∣∣∣ψ〉∣∣∣. (2.52)

Proof. All we need to show in order to prove the above is that F
(∣∣∣ψ〉〈ψ∣∣∣,E (∣∣∣ψ〉〈ψ∣∣∣)) =∣∣∣〈ψ∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)∣∣∣ψ〉∣∣∣. To this end, we will use (2.45).

F
(∣∣∣ψ〉〈ψ∣∣∣,E (∣∣∣ψ〉〈ψ∣∣∣)) = Tr


√√∣∣∣ψ〉〈ψ∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)√∣∣∣ψ〉〈ψ∣∣∣


2

= (2.53)

Tr


√∣∣∣ψ〉〈ψ∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)∣∣∣ψ〉〈ψ∣∣∣


2

=
〈
ψ
∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)∣∣∣ψ〉Tr


√∣∣∣ψ〉〈ψ∣∣∣


2

=
∣∣∣〈ψ∣∣∣E (∣∣∣ψ〉〈ψ∣∣∣)∣∣∣ψ〉∣∣∣.

(2.54)

Quantum Maps that preserve eigenvectors

Perhaps the simplest case of disturbance estimation is the following. It could happen that
the quantum map in question, E , simply rotates the eigensubspaces of some density operator
ρ̂ of interest. i.e. say ρ̂ has the spectral decomposition

ρ̂ =
∑
i

αi
∣∣∣ϕi〉〈ϕi∣∣∣ (2.55)
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and define the quantum map E as follows.

E
(
ρ̂
)

=
∑
i

βi
∣∣∣ϕi〉〈ϕi∣∣∣ (2.56)

In this case
D
(
ρ̂,E

(
ρ̂
))

=
∑
i

|αi − βi|. (2.57)

Quantum map acting on a general mixed state

If we now consider an arbitrary initial mixed state, i.e. a density operator whose purity
may be less than one, things become drastically more difficult. For the infinite-dimensional
case, there really is no simple approach. As an example, let us return to the weak mea-
surement case. Consider a situation where the system being monitored S is described by a
state undergoing decoherence. i.e. let Et be some trace-preserving quantum map inducing
decoherence. Let ρ̂ be some density operator with kernel K. Assume that the effect of Et
on ρ̂ is the following.

Et
(
ρ̂
)

=
∫ ∫

K(x, y)Γ(t(x− y))|x⟩⟨y|dxdy. (2.58)

Where Γ(t(x− y)) → 0 as |t(x− y)| → ∞. Now, recall that the weak measurement POVM
quantum map in this case can be shown to act as follows

Λ
(
Et
(
ρ̂
))

:=
∫

M̂†
qEt
(
ρ̂
)
M̂qdq =

∫ ∫
K(x, y)e− (x−y)2

8σ2 Γ(t(x− y))|x⟩⟨y|dxdy. (2.59)

To measure the disturbance induced by the quantum map Λ we must estimate

∥∥∥∥Et(ρ̂)− Λ
(
Et
(
ρ̂
))∥∥∥∥

1
=
∥∥∥∥ ∫ ∫

K(x, y)Γ(t(x− y))(1 − e− (x−y)2

8σ2 )|x⟩⟨y|dxdy
∥∥∥∥

1
(2.60)

To proceed one would need to diagonalize the kernel K(x, y)Γ(t(x− y))(1 − e− (x−y)2

8σ2 ) or use
numerical techniques to estimate the trace norm of such a kernel, a formidable task.

We now conclude this chapter, having introduced almost all of the theory necessary to
build the novel results of this thesis. In the following chapter we will begin to present
original results; prior to this we will introduce one final bit of crucial theory, i.e. the theory
of Quantum State Discrimination (QSD).



Chapter 3

Asymptotic QSD for Countable and
Uncountable Mixtures

Quantum State Discrimination (QSD) is the problem of minimizing the error in distin-
guishing between the elements of a mixture of density operators ∑i piρ̂i. To understand
what is meant by distinguishing we must refer back to the concepts of a POVM and quan-
tum measurement discussed in the previous section (Definitions 2.2.1, 2.2.2, and 2.2.3). The
QSD optimization problem [67] [73] [25] [22] [23] may now be defined. Let H be an arbitrary
Hilbert space and let H be the space of density operators acting in H . Given a mixture of
density operators,

ρ̂ =
N∑
i=1

piρ̂i (3.1)

where ∑N
i=1 pi = 1, the theory of QSD aims to find a POVM {Êl}Kl=1 ⊂ B(H ) ( K ≥ N ,

Êl = M̂†
lM̂l where the M̂l are the corresponding kraus operators[32]) which resolves the

identity operator of B(H ), and minimizes the object below which we will be referring to as
a probability error.

pE
{
{pi, ρ̂i}Ni=1, {M̂l

}K
l=1

}
:= 1 −

N∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

}
(3.2)

To see what is the error that (3.2) measures let us consider the unread measurement
state (2.30) corresponding to the mixture ∑N

i=1 ρ̂i after having undergone a measurement
generated by the POVM

{
M̂†

iM̂i

}N
i=1

.

N∑
j=1

M̂j

( N∑
i=1

piρ̂i

)
M̂†

j = (3.3)

N∑
i=1

piM̂iρ̂iM̂
†
i +

N∑
j=1

N∑
i;i ̸=j

piM̂jρ̂iM̂
†
j (3.4)

From the definition of POVM provided, it is clear that Tr
{∑N

j=1 M̂j

(∑N
i=1 piρ̂i

)
M̂†

j

}
= 1,

63
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hence from (3.3) and (3.4)

1 =
N∑
i=1

piTr
{
M̂iρ̂iM̂

†
j

}
+

N∑
j=1

N∑
i;i ̸=j

piTr
{
M̂jρ̂iM̂

†
j

}
(3.5)

The term Tr
{
M̂iρ̂iM̂

†
i

}
is the probability that the system modeled by the mixture (3.1) was

in the state ρ̂i given that the outcome of the measurement was the state
M̂i

(∑N

i=1 piρ̂i

)
M̂†

i

Tr

{
M̂i

(∑N

i=1 piρ̂i

)
M̂†

i

} ,

meaning that ∑N
i=1 piTr

{
M̂iρ̂iM̂

†
i

}
is the probability that POVM chosen perfectyl discrimi-

nates between the different ρ̂i of the mixture (3.1). The term 1 −∑N
i=1 piTr

{
M̂iρ̂iM̂

†
i

}
, the

probability error, is hence the probability that the POVM fully fails to discriminate between
the elements of the mixture (3.1). Using (3.5) it may also be expressed as∑N

j=1
∑N
i;i ̸=j piTr

{
M̂jρ̂iM̂

†
j

}
.

In what follows we will just write pE in place of pE
{
{pi, ρ̂i}Ni=1, {M̂l

}K
l=1

}
as a shorthand when

the context is clear. With this notation, the QSD optimization problem is the problem of
computing the following minimum.

min
POVM

pE (3.6)

The QSD problem will be called fully solvable when minPOVM pE = 0.

In this Chapter we consider an Asymptotic QSD: let Ei,n be a family of completely positive
linear transformations, mapping density operators ρ̂ acting in a Hilbert space H1 to density
operators Ei,ni

(
ρ̂
)

acting in a Hilbert space H2 (equal to H1 or not). These operators depend
on parameters ni, and we consider the QSD problem for the mixture of the operators Ei,ni

(
ρ̂
)

The object of our interest is the asymptotic behavior of the minimal error (3.6) corresponding
to this QSD, as some or all ni → ∞. We will say that the asymptotic QSD problem fully
solvable with respect to the parameter ni when

lim
|ni|→∞

min
POVM

pE
{
{pi,Ei,ni

(
ρ̂
)
}Ni=1, {M̂l

}K
l=1

}
= 0 (3.7)

the minimization above is understood to be taken for every ni.
Asymptotic QSD arises naturally in the study of quantum communication, quantum to

classical transitions and quantum measurement, just to name a few applications [62][41][22]
[27]. As an example consider the case where a state is redundantly prepared by some party
A in the state ρ̂i with probability pi, n copies of each state being made prior to being
communicated to another party. From the perspective of some party B, receiving the state
prepared by A, the received state would be a mixture of the following form∑

i

piρ̂
⊗n
i (3.8)

In such a case the corresponding maps Ei,ni
have ni = n for all i and are the map ρ̂ to ρ̂⊗n

for all i. Now, define minPOVMP pE(n) := minPOVM pE
{
{pi, ρ̂⊗n

i }Ni=1, {M̂l

}K
l=1

}
. In [26] it
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was shown that

1
3ξQCB

({
ρ̂i
}N
i=1

)
≤ − lim

n→∞

log
(

minPOVMP pE(n)
)

n
≤ ξQCB

({
ρ̂i
}N
i=1

)
(3.9)

where ξQCB is the quantum Chernoff bound for an N mixture, defined as

ξQCB

({
ρ̂i
}N
i=1

)
:= min

i,j
ξQCB

(
ρ̂i, ρ̂j

)
(3.10)

where
ξQCB

(
ρ̂i, ρ̂j

)
= − log

(
min

0≤s≤1
Tr
{
ρ̂si ρ̂

1−s
j

})
(3.11)

This gives us an idea of how the minimum error probability drops off asymptotically as
the redundancy n grows. Indeed as n → ∞ we have minPOVM pE → 0.

One may also use a Quantum Chernoff-bound-free method for the computation of limn→∞ minPOVM pE(n)
by applying a bound to the minimal probability error in [28] (Theorem 3.2.3 in the following
section). Let

∥∥∥Â∥∥∥
1

:= Tr
{√

Â†Â
}

be the trace norm of the operator Â Applying Theorem
3.2.3 we have the following result.

min
POVM

pE(n) ≤
∑
i

∑
j;j ̸=i

√
pipj

∥∥∥∥√ρ̂⊗n
i

√
ρ̂⊗n
j

∥∥∥∥
1

=
∑
i

∑
j;j ̸=i

√
pipj

∥∥∥∥√ρ̂i
√

ρ̂j

∥∥∥∥n
1

(3.12)

which decays to zero as n → ∞ when
∥∥∥∥√ρ̂i

√
ρ̂j

∥∥∥∥
1
< 1 for all i, j; j ̸= i. One of the re-

markable aspects of such a result is the state-independent nature of the convergence, i.e. so
long as the fidelity condition stated in the previous sentence is satisfied, the type of states
are irrelevant; e.g. they can be finite or infinite dimensional density operators. QSD will
nevertheless be dependent on the states ρ̂i constituting the mixture in general. Our next
example exemplifies this.

More recently, and more pertinently to the theme of this paper, asymptotic QSD has
made an appearance in the theory of Spectrum Broadcast Structures (SBS) [41] for quantum
measurement limit type interactions (see section 2.4 in [32] for a discussion on quantum
measurement limit). In the SBS framework, a notion of objectivity is introduced which
postulates that a specific type of state, called an SBS state [41] [40] [39], will emerge from
the asymptotic dynamics. The definition of an SBS state stipulates the calculation of a
problem related to that of QSD when proving that a state of interest converges one of these
so-called SBS state. The relevant optimization problem is now the super QSD problem
(SQSD) which is just a simple upper bound of the QSD problem. i.e.

SQSD := min
POVM

∥∥∥∥1 −
N∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

}∥∥∥∥
1

≥ min
POVM

(
1 −

N∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

})
= QSD

(3.13)
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In [39] [40] [41], special attention has been given to SQSD problems of the following form.

min
POVM

∑
i

pi
∥∥∥e−itxiB̂ρ̂eitxiB̂ − M̂ie

−itxiB̂ρ̂eitxiB̂M̂†
i

∥∥∥
1

(3.14)

where xi ̸= xj for all i, j; j ̸= i and B̂ is an arbitrary self-adjoint operator; the state being
discriminated here is of course ∑i pie

−itxiB̂ρ̂eitxiB̂. Such unitarily related mixtures, with
a parameter t, arise as a direct consequence of the aforementioned quantum measurement
limit assumption made in [39][40][41]. The super QSD problem (3.14) is asymptotically fully
solvable with respect to t only if the associated QSD problem is fully solvable. Unlike example
(3.8), where the asymptotic full solvability of the respective QSD problem was independent
of the nature of the states involved, here this is not the case. It is easy to find examples where
SQSD optimization problems of the type exhibited in (3.14) does not vanish as t → ∞. e.g,
let B̂ be equal to the Pauli matrix σ̂x and let ρ̂ =

∣∣∣z1
〉〈
z1

∣∣∣ with
{∣∣∣zi〉}

i
the eigenvectors of

the Pauli matrix σ̂z. It is easy to show that

e−itxiσxρ̂e−itxiσx = (3.15)

cos2(txi)
∣∣∣z1
〉〈
z1

∣∣∣+ sin2(txi)
∣∣∣z2
〉〈
z2

∣∣∣+ (3.16)

i cos(txi) sin(txi)
∣∣∣z1
〉〈
z2

∣∣∣− i cos(txi) sin(txi)
∣∣∣z2
〉〈
z1

∣∣∣ (3.17)
Now consider the mixture

2∑
i=1

pie
−itxiσxρ̂e−itxiσx (3.18)

and let pi = 1
2 for i = 1, 2. An application of a result by Hellström [67], discussed in the

next section leads to

min
POVM

pE(t) = 1
2 − 1

4
∥∥∥e−itx1σxρ̂e−itx1σx − e−itx1σxρ̂e−itx1σx

∥∥∥
1

= (3.19)

2
∣∣∣∣
√(

cos2(tx1) − cos2(tx2)
)(

sin2(tx1) − sin2(tx2)
)

−
(∣∣∣ cos(tx1) sin(tx1) − cos(tx2) sin(tx2)

∣∣∣2)∣∣∣∣
(3.20)

Clearly (3.19) does not converge to zero as t → ∞, ergo asymptotic QSD is not fully solvable
and, by consequence of (3.13), neither is the associated asymptotic SQSD problem.

In this Chapter, we will be focusing on the QSD of unitarily related mixtures (URM);
i.e. mixtures of the form ∑

i piÛi(t)ρ̂Û†
i (t), where Ûi(t) are all unitary operators with the

same generator. We will provide a necessary and sufficient condition for the asymptotic
full solvability of the QSD optimization problem for a broad set of URM; this condition
will depend on the spectral properties of the generator of the unitary group characterizing
the URM and the nature of the initial state, i.e. the state of the mixture when t = 0. In
Sections 2, and 3 we will give an overview of some important results from the literature
that we shall be using and give further motivation. In section 4 we present one of our main
results (Theorem 3.6.2 and Corollary 3.6.1) which gives necessary and sufficient conditions



3.1. PVM QUANTUM STATE DISCRIMINATION 67

for asymptotic QSD optimization of unitarily related mixtures to be fully solvable in a broad
setting. In section 5 we shall introduce the optimization problem of Uncountable Quantum
State Discrimination (UQSD); a framework that generalizes the problem of QSD. Drawing
parallels between QSD and UQSD we prove a necessary condition for UQSD in the unitarily
related mixture case to be fully solvable in the asymptotic regime with respect to a dynamical
parameter t. This condition will again depend only on the spectral properties of the generator
of the unitary group characterizing the URM and the nature of the initial state. We conclude
this discussion by conjecturing that the analog of Theorem 3.6.2 is true for the UQSD case
in the unitarily related mixture setting; we follow this conjecture with some motivation and
intuition. Furthermore, we provide examples of QSD and UQSD for a variety of settings and
discuss the case where B̂ is finite rank.

3.1 PVM Quantum State Discrimination

Let us consider agin the minimization problem

min
POVM

{
1 −

N∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

}}
. (3.21)

The minimization in (3.21) is taken over all POVM which which maps from S(H ) to S(H )
. Let us now narrow the set of possible POVM to just those of the projector type. To
emphasize this we will change our notation from Êl to P̂l, and owing to the facts that
projectors are self-adjoint and P̂2 = P̂, the respective measurement operators of M̂l will just
be P̂l. Let us rewrite the probability error using this new notation.

min
PVM

{
1 −

N∑
i=1

piTr
{
P̂iρ̂i

}}
. (3.22)

In the above, we have made use of the cyclic property of the trace (1.33). In (3.22) and (3.21)
we are minimizing over all PVM and POVM respectively. Furthermore, (3.22) bounds (3.21)
from above due to the latter term being a minimization performed on the same objective
function as (3.21) but over a smaller set. i.e.

min
POVM

{
1 −

N∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

}}
≤ min

PVM

{
1 −

N∑
i=1

piTr
{
P̂iρ̂i

}}
(3.23)

In some cases, working with PVM is simpler and suffices. The optimization problems
(3.22) and (3.21) will, in general, be intractable; exact solutions exist only in a few specialized
cases [22] [23]. The most famous of these cases pertains to the the so-called Hellström bound
[67]. It is a funny name because it is not a bound. We present the exposition found in [22]
below.
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Theorem 3.1.1 (Hellström Bound)

Let H be an arbitrary Hilbert space. For any mixture of the form

p1ρ̂1 + p2ρ̂2 ∈ S(H ). (3.24)

Then,
min
POVM

pE
{
{pi, ρ̂i}2

i=1, {Êl

}2

l=1

}
= 1

2 − 1
2
∥∥∥p1ρ̂1 − p2ρ̂2

∥∥∥
1
. (3.25)

where the optimal POVM leading to the minimal error are the projectors P̂+ and P̂−
onto the positive and negative subspaces of the operator p1ρ̂1 − p2ρ̂2.

Due to the optimal POVM yielding minimal error in the Hellstr öm bound being a set of
projectors, we know that for mixtures of two elements ∑2

i=1 piρ̂i both PVM QSD and POVM
QSD will be equal. i.e.

min
POVM

{
1−

2∑
i=1

piTr
{
M̂iρ̂iM̂

†
i

}}
= 1

2 − 1
2
∥∥∥p1ρ̂1−p2ρ̂2

∥∥∥
1

= min
PVM

{
1−

2∑
i=1

piTr
{
P̂iρ̂i

}}
(3.26)

3.2 Some Useful Theorems
Lower and upper bounds for the probability error in the case of a general mixture exist.
Some of the more famous ones are the following. For any mixed quantum states

{
ρ̂i
}N
i=1

with
respective probabilities {pi}i, the minimum-error probability minPOVM pE may be bounded
as follows for an arbitrary Hilbert space H .

Theorem 3.2.1 (Li and Qiu Bound [25])

min
POVM

pE ≥ 1
2
(
1 − 1

2(N − 1)
∑
i

∑
j;j ̸=i

∥∥∥piρ̂i − pjρ̂j
∥∥∥

1

)
(3.27)

Theorem 3.2.2 (Montanaro Bound [73])

min
POVM

pE ≥ 1
2
∑
i

∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) (3.28)

Theorem 3.2.3 (Knill and Barnum [28])

min
POVM

pE ≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i, ρ̂j

)
(3.29)

Proven for the case where the underlying Hilbert space is assumed finite-dimensional in
[28]. We provide a proof of the same result for the case where H is infinite-dimensional
in subsection 3.2.1.
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In [25], necessary and sufficient conditions are introduced in order to arrive at a general-
ization of the Hellström bound. Unlike the proof by Hellström for the two-state mixture, Qiu
does not provide a constructive proof. We, therefore, do not have explicit knowledge of the
POVM minimizes pE although [25] is the work known to the author that makes the greatest
advances in this direction. If the inequalities above are not enough for our needs, there also
exist convex optimization techniques that may be employed in order to find a global min for
the objective fiction pE (3.2) [22][71] , but we will not be entering this realm for two reasons.
Firstly, the mixtures that we shall be studying will be dynamic. i.e. ∑i piρ̂i,t. The mixtures
of this type that we will be interested in shall have the following asymptotic properties.

F
(
ρ̂i,t, ρ̂j,t

)
→ 0, i ̸= j, t Large (3.30)

The latter means that their support will become asymptotically non-overlapping very quickly
with respect to the relevant time frame. These dynamics will make the aforementioned linear
programming techniques quite more complex than the static case; also unnecessary since we
will be primarily interested in the asymptotic regime for t. The second reason we will not be
utilizing the linear programming schemes mentioned is the dimension of the density opera-
tors we shall be working with, i.e. dim(H ) = ∞. In this case, the set of possible PVM or
POVM is unwieldy in the sense that it will not be parametrizable like the finite-dimensional
case. Although infinite, the set of PVM mapping S(C2) to S(C2) may be parametrized by
a finite number of parameters; such is not the case when dim(H ) = ∞.

To conclude this section we shall present some key results pertaining to the quantum
fidelity.

Theorem 3.2.4 (Purification dependent version of the Fidelity)

The quantum fidelity F
(
ρ̂, σ̂

)
is equivalent to the following [9].

F
(
ρ̂, σ̂

)
= max

|χ⟩

∣∣∣〈ξ∣∣∣χ〉∣∣∣2 (3.31)

where
∣∣∣ψ〉 is any fixed purification of ρ̂, and the maximization is over all purifications

of σ̂.

Theorem 3.2.5 (Subconcavity of the Fidelity; A Generalization from
the equivalent theorem for singular distributions in [9] )

Let
∫
p(x)ρ̂xdx and

∫
q(x)σ̂xdx be two uncountable mixtures (p(x) and q(x) are prob-

ability distributions). Then,√
F
( ∫

p(x)ρ̂xdx,
∫
q(x)σ̂xdx

)
≥
∫ √

p(x)q(x)F
(
ρ̂x, σ̂x

)
dx (3.32)

Proof. The proof herein follows the standard methodology seen in [9] Chapter 9 for the
countable mixture case. Begin by letting

∣∣∣ψx〉 and
∣∣∣σx〉 the purifications of ρ̂x and σ̂x which
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satisfy the maximization version of the fidelity; i.e. F
(

ρ̂x, σ̂x

)
=
∣∣∣〈ψx∣∣∣ϕx〉∣∣∣2. We now define

∣∣∣ψ〉 :=
∫ √

p(x)
∣∣∣ψx〉∣∣∣x〉dx (3.33)

∣∣∣ϕ〉 :=
∫ √

q(x)
∣∣∣ϕx〉∣∣∣x〉dx. (3.34)∣∣∣ψ〉 and

∣∣∣ϕ〉 are purifications of the operators
∫
p(x)ρ̂xdx and

∫
q(x)σ̂xdx where the ancillary

space is taken to be L2
(
R
)
. Using Theorem 3.2.4 we now have.

√
F
( ∫

p(x)ρ̂xdx,
∫
q(x)σ̂xdx

)
≥ |

〈
ϕ
∣∣∣ψ〉∣∣∣ = (3.35)

∣∣∣∣∣∣
∫ √

p(x)
√
q(y)

〈
ψx
∣∣∣ϕy〉〈x∣∣∣y〉dydx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ ∫ √

p(x)q(x)
〈
ψx
∣∣∣ϕx〉dx

∣∣∣∣∣∣ = (3.36)

∣∣∣∣∣∣
∫ √

p(x)q(x)
〈
ψx
∣∣∣ϕx〉dx

∣∣∣∣∣∣ =
∫ √

p(x)q(x)F
(
ρ̂x, σ̂x

)
dx (3.37)

The latter gives us the means by which we may bound fidelities of mixed state from
below. There is a useful corollary that follows immediately from Lemma 3.2.5. We present
it here below.

Corollary 3.2.1 (Sub-concavity in one argument)

Let
∫
p(x)ρ̂xdx be some uncountable mixture, and σ̂ be some arbitrary density oper-

ator (p(x) is a probability distributions). Then,√
F
( ∫

p(x)ρ̂xdx, σ̂
)

≥
∫
p(x)F

(
ρ̂x, σ̂

)
dx (3.38)

Proof. Note that σ̂ =
∫
p(x)σ̂dx. The proof follows from applying Lemma (3.2.5) to the

Fidelity
√
F
( ∫

p(x)ρ̂xdx,
∫
q(x)σ̂dx

)
.

Note that the probability distributions p(x) and q(x) found in the results above pertain-
ing to the quantum fidelity may be singular ; Dirac measures for example. If p(x) and q(x)
are taken to be singular measures then we may obtain the countable versions of the Theorem
3.2.5 and Corollary 3.2.1 ubiquitous in quantum information theory texts such as [9].

Before ending this section, we dedicate a subsection to proving that Theorem 3.2.3 can
indeed be generalized to the case of mixtures of infinite dimensional density operators.
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3.2.1 Generalizing the Knill-Barnum Bound

Recall that for a mixed state, ∑N
i=1 piρ̂i of finite rank density matrices, the QSD problem

may be bounded from above as follows (by Theorem 3.2.3).

min
POVM

(
1 −

N∑
i=1

piTr{M̂iρ̂jM̂
†
i}
)

≤
N∑
i=1

N∑
j ̸=i

√
pipj

√
F (ρ̂i, ρ̂j) (3.39)

Before we can use this result in all generality we have to reassure ourselves that this bound
will work for the case where the density operators in question, i.e. ρ̂i are infinite-dimensional.
The verification is necessary because the proof of (3.29) in [28] uses techniques that involve
inverting linear combinations of the operators ρ̂i, and as is known from functional analysis,
infinite-dimensional compact operators are not invertible. Hence, it is necessary to ensure
the extension of Theorem3.2.3 to the case of infinite-dimensional density operators. Before
we move on to the proof, we will first prove a Lemma that will be useful in proving the
upcoming theorem.

Lemma 3.2.1 (Limit Lemma)

Let ρ̂i,d = ∑d
k=1 λki|ψki⟩⟨ψki| be a rank d approximation of the operator ρ̂i . Then

lim
d→∞

∥∥∥∥√ρ̂i,d
√

ρ̂j,d

∥∥∥∥
1

=
∥∥∥∥√ρ̂i

√
ρ̂j

∥∥∥∥
1

(3.40)

Proof.

lim
d→∞

∣∣∣∣∣
∥∥∥∥√ρ̂i,d

√
ρ̂j,d

∥∥∥∥
1

−
∥∥∥∥√ρ̂i

√
ρ̂j

∥∥∥∥
1

∣∣∣∣∣ ≤ (3.41)

lim
d→∞

∥∥∥∥∥√ρ̂i,d
√

ρ̂j,d −
√

ρ̂i
√

ρ̂j

∥∥∥∥∥
1

≤ (3.42)

lim
d→∞

∥∥∥∥∥√ρ̂i,d
√

ρ̂j,d −
√

ρ̂i
√

ρ̂j,d

∥∥∥∥∥
1

+ lim
d→∞

∥∥∥∥∥√ρ̂i
√

ρ̂j,d −
√

ρ̂i
√

ρ̂j

∥∥∥∥∥
1

≤ (3.43)

lim
d→∞

∥∥∥∥∥√ρ̂i,d −
√

ρ̂i

∥∥∥∥∥
2

∥∥∥√ρ̂j,d
∥∥∥

2
+ lim

d→∞

∥∥∥∥∥√ρ̂j,d −
√

ρ̂j

∥∥∥∥∥
2

∥∥∥√ρ̂i
∥∥∥

2
≤ (3.44)

lim
d→∞

∥∥∥∥∥√ρ̂i,d −
√

ρ̂i

∥∥∥∥∥
2

+ lim
d→∞

∥∥∥∥∥√ρ̂j,d −
√

ρ̂j

∥∥∥∥∥
2

= (3.45)

lim
d→∞

∥∥∥∥∥ ∑
k=d+1

√
λki|ψki⟩⟨ψki|

∥∥∥∥∥
2

+ lim
d→∞

∥∥∥∥∥ ∑
k=d+1

√
λkj|ψkj⟩⟨ψkj|

∥∥∥∥∥
2

= (3.46)

lim
d→∞

√√√√ ∞∑
k=d+1

λki +
√√√√ ∞∑
k=d+1

λkj

 = lim
d→∞

∞∑
k=d+1

(√
λki +

√
λkj

)
= 0 (3.47)
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We are now ready to prove that Theorem 3.2.3 may be generalized to the case of mixtures
of infinite dimensional density operators. .

Theorem 3.2.6 (Knill and Barnum Bound [28] Generalized)

Let ∑N
i=1 piρ̂i be some finite mixture of infinite dimensional density operators, then the

Knill Barnum (3.29) bound applies to such a mixture.

Proof. Starting from the optimization problem minPOVM
∑N
i=1

∑M
j;j ̸=i piTr{M̂jρ̂iM̂

†
j}, notice

that we may rewrite each ρ̂i as the limit of a sequence of finite rank operators. To see this,
first we diagonalize the ρ̂i. i.e. ρ̂i = ∑∞

k=1 λki|ψki⟩⟨ψki|. Where the λki are the eigen values
of ρ̂i. A d rank approximation of ρ̂i is therefore ρ̂i,d := ∑d

k=1 λki|ψki⟩⟨ψki| and indeed

lim
d→∞

∥∥∥∥ρ̂i,d − ρ̂i

∥∥∥∥
1

= lim
d→∞

∥∥∥∥ ∞∑
k=d+1

λki|ψki⟩⟨ψki|
∥∥∥∥

1
≤ lim

d→∞

∞∑
k=d+1

|λki| = 0. (3.48)

To proceed we must first demonstrate

min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂iM̂
†
j} = lim

d→∞
min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}. (3.49)

To show the above we need only show that

lim
d→∞

∣∣∣∣∣ min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂iM̂
†
j} − min

POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣∣ = 0. (3.50)

We proceed as follows.∣∣∣∣∣ min
POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂iM̂
†
j} − min

POVM

∑
i=1

∑
j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣∣ ≤ (3.51)

max
POVM

∣∣∣∣∣∑
i=1

∑
j;i ̸=j

piTr{M̂j

(
ρ̂i − ρ̂i,d

)
M̂†

j}
∣∣∣∣∣ ≤ (3.52)

max
POVM

∑
i=1

∑
j;i ̸=j

pi

∥∥∥∥M̂j

(
ρ̂i−ρ̂i,d

)
M̂†

j

∥∥∥∥
1

≤ max
POVM

∑
i=1

∑
j;j ̸=i

pi
∥∥∥M̂j

∥∥∥
∞

∥∥∥∥(ρ̂i−ρ̂i,d
)∥∥∥∥

1

∥∥∥M̂†
j

∥∥∥
∞

= (3.53)

max
POVM

∑
i=1

∑
j;j ̸=i

pi

∥∥∥∥(ρ̂i − ρ̂i,d
)∥∥∥∥

1
=
∑
i=1

∑
j;j ̸=i

pi

∥∥∥∥(ρ̂i − ρ̂i,d
)∥∥∥∥

1
= (3.54)

∑
i=1

∑
j;j ̸=i

pi
∞∑

k=d+1
|λki| ≤ N

∑
i

pi
∞∑

k=d+1
|λki| (3.55)

and indeed
lim
d→∞

N
∑
i=1

pi
∞∑

k=d+1
λki = (3.56)
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N
N∑
i=1

pi lim
d→∞

∞∑
k=d+1

λki = N
N∑
j=1

0 = 0. (3.57)

Therefore,

lim
d→∞

∣∣∣∣∣ min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jρ̂iM̂
†
j} − min

POVM

N∑
i,j;i ̸=j

piTr{M̂jρ̂i,dM̂
†
j}
∣∣∣∣∣ = 0 (3.58)

which means that

min
POVM

N∑
i=1

N∑
j;j ̸=i

pjTr{M̂jρ̂iM̂
†
j} = lim

d→∞
min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jρ̂i,dM̂
†
j}. (3.59)

Let us now introduce a normalization constant αi,d := Tr
{
ρ̂i,d

}
. Using this normalization

and the Knill-Barnum bound (3.29) [28] we have

lim
d→∞

min
POVM

N∑
i

N∑
j;j ̸=i

pjα
−1
i,dTr{M̂jαi,dρ̂i,dM̂

†
j} ≤ lim

d→∞
max
k

(
α−1
k,d

)
min
POVM

N∑
i=1

N∑
j;j ̸=i

piTr{M̂jαi,dρ̂i,dM̂
†
j} ≤

(3.60)

lim
d→∞

max
k

(
α−1
k,d

) N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F (αi,dρ̂i,d, αj,dρ̂j,d) = (3.61)

lim
d→∞

max
k

(
α−1
k,d

) N∑
i=1

N∑
j;j ̸=i

√
pipj

∥∥∥∥√αi,dρ̂i,d√αj,dρ̂j,d∥∥∥∥
1

= (3.62)

N∑
i=1

N∑
j;j ̸=i

√
pipj lim

d→∞
max
k

(
α−1
k,d

)√
αi,dαj,d

∥∥∥√ρ̂i,d
√

ρ̂j,d
∥∥∥

1
= (3.63)

N∑
i

N∑
j;j ̸=i

√
pipj

(
lim
d→∞

max
k

(
α−1
k,d

)√
αi,dαj,d

)(
lim
d→∞

∥∥∥∥√ρ̂i,d
√

ρ̂j,d

∥∥∥∥
1

)
= (3.64)

N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F (ρ̂i, ρ̂j) (3.65)

where we have used lemma 3.2.1 and the fact that limd→ αk,d = 1 for all k in the final
equality.

3.3 Unitarily Related Mixtures

In what follows we will be restricting our attention to a specific type of ensemble {pi, ρ̂i,t}Ni=1.
Namely, those where

ρ̂i,t := e−itxiB̂ρ̂eitxiB̂ (3.66)

for some self-adjoint operator B̂ and some density operator ρ̂ both acting in an arbitrary
Hilbert space H . All of the operators ρ̂i,t are unitary evolutions of the density operator
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ρ̂, with the dynamics being generated respectively by the operators xiB̂. Of particular
interest to us will be the case where the operator B̂ has purely continuous spectrum and a
non-empty Rajchman subspace Hrc with ρ̂ ∈ S

(
Hrc

)
(See Section 3.5 of this thesis) [59];

such assumptions will be necessary in order to guarantee (3.30). A particular instance of
the latter setup will be the case where B̂ is a quadrature operator [19], aka position or
momentum operators (the quadrature operator pairs are a generalization of these). In such
a case the entire Hilbert space L2

(
R
)

will be the Rajchman subspace [59]. For starters,
let us work in the case where B̂ is a momentum operator; we will then generalize to the
case of a general quadrature operator. In section 3.5 we will formalize the concept of the
Rajchman subspace and use this to prove asymptotic QSD for a broad family of unitarily
related mixtures. Before proceeding we present two lemmas.

Lemma 3.3.1 (Trace Lemma)

Let the operator B̂ be a momentum operator (1.20) acting in D
(
B̂
)

⊂ L2(R). We call
X̂ satisfying

[
X̂, B̂

]
= iI the conjugate of B̂, aka the position operator. Let ρ̂ be some

density operator in S
(
L2(R)

)
with representation

ρ̂ =
∫ ∫

K(x, y)
∣∣∣x〉〈y∣∣∣dxdy (3.67)

in the generalized eigenbais of X̂. Then, it can be shown that

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

K(x, y)
∣∣∣x+ txi

〉〈
y + txi

∣∣∣dxdy (3.68)

and
Tr{e−itxiB̂ρ̂eitxiB̂} =

∫
K(x− txi, x− txi)dx. (3.69)

Proof. The proof hinges on utilizing the following decomposition found in standard quantum
textbooks [6]. ∣∣∣x〉 =

∫
e−ibx

∣∣∣b〉db.
 ∫ ∣∣∣x〉〈x∣∣∣dx = I

, (3.70)

where
∣∣∣x〉 and

∣∣∣b〉 are the position and momentum operators’ generalized eigenkets respec-
tively. Furthermore, 〈

b
∣∣∣x〉 = 1√

2π
e−ibx. (3.71)

We will first prove (3.68) of Lemma 3.3.1. Notice that we may rewrite ρ̂, originally
expressed in the position generalized basis, in the momentum generalized basis.

ρ̂ =
∫ ∫

K(x, y)
∣∣∣x〉〈y∣∣∣dxdy =

∫ ∫ ∫ ∫
K(x, y)

∣∣∣b〉〈b∣∣∣x〉〈y∣∣∣b′
〉〈
b′
∣∣∣dbdb′dxdy = (3.72)
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∫ ∫ { ∫ ∫
K(x, y)

〈
b
∣∣∣x〉〈y∣∣∣b′

〉
dxdy

}∣∣∣b〉〈b′
∣∣∣dbdb′ =

∫ ∫ {
1

2π

∫ ∫
K(x, y)e−ibxeib

′ydxdy

}∣∣∣b〉〈b′
∣∣∣dbdb′ =

(3.73)∫ ∫
K̂(b, b′)

∣∣∣b〉〈b′
∣∣∣dbdb′ (3.74)

where K̂(b, b′) is the 2-D Fourier transform of the kernel K(x, y). Now,

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

e−itxibeitxib
′
K̂(b, b′)

∣∣∣b〉〈b′
∣∣∣dbdb′ = (3.75)

∫ ∫ {
1

2π

∫ ∫
e−itxibeitxib

′
K̂(b, b′)eibxe−ib′ydbdb′

}∣∣∣x〉〈y∣∣∣dxdy = (3.76)

∫ ∫ {
1

2π

∫ ∫
ei(x−txi)be−i(y−txi)b′

K̂(b, b′)dbdb′
}∣∣∣x〉〈y∣∣∣dxdy = (3.77)

∫ ∫
K(x− txi, y − txi)

∣∣∣x〉〈y∣∣∣dxdy =
∫ ∫

K(x, y)|x+ txi⟩⟨y + txi|dxdy. (3.78)

The physicists reading this may simply be used to working with the operator e−itxiB̂ and
immediately identify it as a translation operator. In such a case one may simply take for
granted that e−itxiB̂

∣∣∣x〉 =
∣∣∣x+ txi

〉
since it is an elementary result from introductory quan-

tum mechanics.

Finally, proving (3.69) is easier since we may use property (3.68).

e−itxiB̂ρ̂eitxiB̂ =
∫ ∫

K(x, y)
∣∣∣x+ txi

〉〈
y + txi

∣∣∣dxdy =
∫ ∫

K(x− txi, y − txi)
∣∣∣x〉〈y∣∣∣dxdy.

(3.79)
From here, (3.69) follows directly from the generalization to Theorem 1.3.1 presented in
Chapter 2. This generalization may be found in [48] ( ADDENDA D).

Lemma 3.3.2 (Trace Lemma)

Let ∆ ∈ R and define P̂∆ :=
∫

∆ |x⟩⟨x|dx. The operator P̂∆ :=
∫

∆ |x⟩⟨x|dx is projector
acting in the Hilbert space L2(R). Then, for any ρ̂ ∈ S

(
L2
(
R
))

with representation
ρ̂ =

∫ ∫
K(x, y)|x⟩⟨y|dxdy, where K(x, y) is the kernel of ρ̂,

Tr
{
P̂∆ρ̂P̂∆

}
= Tr

{
P̂∆ρ̂

}
=
∫

∆
K(x, x)dx (3.80)

Proof.
P̂∆ρ̂P̂∆ =

∫
∆

∫
∆

∫ ∫
K(x, y)

∣∣∣w〉〈w∣∣∣x〉〈y∣∣∣z〉〈z∣∣∣dxdydwdz = (3.81)∫
∆

∫
∆

∫ ∫ ∫
K(x, y)δ(w − x)δ(y − z)

∣∣∣w〉〈z∣∣∣dxdydwdz =
∫

∆

∫
∆
K(x, y)

∣∣∣x〉〈y∣∣∣dxdy. (3.82)
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Using, once again, the generalization to Theorem 1.3.1 taking the trace of
∫

∆
∫

∆ dxdyK(x, y)
∣∣∣x〉〈y∣∣∣

simply mounts to integrating along the diagonal of K(x, y) over the set ∆. i.e.

Tr

{∫
∆

∫
∆
K(x, y)

∣∣∣x〉〈y∣∣∣dxdy} =
∫

∆
K(x, x)dx. (3.83)

Hence, we conclude that
Tr
{
P̂∆ρ̂P̂∆

}
=
∫

∆
K(x, x)dx. (3.84)

By the cyclicity of the trace, it immediately follows that Tr{P̂∆ρ̂P̂∆} = Tr{P̂2
∆ρ̂} =

Tr{P̂∆ρ̂} and so we have our result.

We now have the tools for facing the problem at hand, i.e. finding a PVM
{
P̂l

}
l

such
that (3.22) is approximately minimized for the case of the ensemble {pi, ρ̂i,t}Ni=1, where again

ρ̂i,t := e−itxiB̂ρ̂eitxiB̂. (3.85)

where B̂ is a momentum operator and ρ̂ ∈ S
(
L2
(
R
))

. To that end let us partition the real
line in the following way.

∆1,t :=
(

− ∞, t
x1 + x2

2

)
(3.86)

∆i,t :=
(
t
xi−1 + xi

2 , t
xi + xi+1

2

)
1 < i < N (3.87)

∆N,t :=
(
t
xN−1 + xN

2 ,∞
)

(3.88)

Indeed ⋃N
i=1 ∆i,t = R. Letting P̂∆i,t

:= χ∆i,t

(
X̂
)
, where X̂ is the conjugate operator to B̂,

i.e. the corresponding position operator, we have the following.

N∑
i=1

P∆i,t
=

N∑
i=1

∫
∆i,t

∣∣∣x〉〈x∣∣∣dx =
∫
R

∣∣∣x〉〈x∣∣∣dx = I. (3.89)

To check if the POVM constructed above {P̂∆i,t
}Ni=1 is efficient in discriminating the mixture∑N

i=1 piρ̂i,t, let us compute the Tr{ρ̂i,tP̂∆i,t
}. Computing such traces just involves a simple

application of Lemma 3.3.2 and a change of variables. We present the results below and a
short computational proof in the following.

Tr{P̂∆1,tρ̂1,t} =
∫

∆1,t

K(x− tx1, x− tx1)dx =
∫ t

x2−x1
2

−∞
K(x, x)dx (3.90)

Tr{P̂∆i,t
ρ̂i,t} =

∫
∆i,t

K(x− txi, x− txi)dx =
∫ t

xi+1−xi
2

t
xi−1−xi

2

K(x, x)dx (3.91)
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Tr{P̂∆N,t
ρ̂N,t} =

∫
∆N,t

K(x− txN , x− txN)dx =
∫ ∞

t
xN−1−xN

2

K(x, x)dx (3.92)

Proof.

Tr{P̂∆1,tρ̂1,t} =
∫ t

x1+x2
2

−∞
dxK(x− tx1, x− tx1) (3.93)

Let u(x) = x − tx1, then du(x) = dx, u(tx1+x2
2 ) = tx1+x2

2 − tx1 = tx2−x1
2 , and furthermore

u(−∞) = −∞. Using this substitutive scheme we may recast (3.90) as
∫ tx2−x1

2
−∞ K(u, u)du

which is what we set out to prove. In a similar fashion, one may convince oneself that
equations (3.91) and (3.92) hold.

For finite {xi}Ni=1 all of the above integrals approach 1 asymptotically as t → ∞. The
latter implies that (3.22) goes to zero as well. We will state the latter as a theorem.

Theorem 3.3.1

Consider the mixture ∑N
i=1 piρ̂i,t where ρ̂i,t := e−itxiB̂ρ̂eitxiB̂, B̂ is a momentum oper-

ator and ρ̂ ∈ S
(
L2
(
R
))

. Then

min
PVM

{
1 −

N∑
i=1

piTr
{
P̂iρ̂iP̂i

}}
≤ (3.94)

1 − p1

∫ t
x2−x1

2

−∞
K(x, x)dx−

∑
1<i<N

pi

∫ t
xi+1−xi

2

t
xi−1−xi

2

K(x, x)dx− pN

∫ ∞

t
xN−1−xN

2

K(x, x)dx

(3.95)
For t → ∞ the above upper bound approaches 1 − ∑N

i=1 pi = 1 − 1 = 0 achieving
optimal QSD.

We have focused on the Hilbert space L2
(
R
)

but these results may be easily extended to
the case of n dimensional square-integrable functions by the same methodology.

3.4 More Unitarily Related Mixtures
Hitherto we constrained ourselves to a mixture of the form

N∑
k=1

ρ̂k,t :=
N∑
k=1

e−itxkB̂ρ̂eitxkB̂ (3.96)

where B̂ was taken to be the momentum operator and ρ̂ ∈ S
(
L2(R2)

)
. In this section, we

will gradually move toward studying more general mixtures of the unitarily related type and
their respective QSD problem. Firstly, we will study the case where the unitary evolution
is generated by parametrized Displacemet [19] operators, a generalization of the momentum
operator; we will analyze such a case for a simple coherent state as our t = 0 density operator
ρ̂, then we shall generalize to an arbitrary state.
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3.4.1 Quadrature Operators

A generalization of the momentum-position conjugate pair of operators may be arrived at
by recalling that the position and momentum operators P̂ and X̂ may be written in terms
of ladder operators. We present them below in the ladder operator form discussed in (1.93)
(1.94), including units.

X̂ =
√

1
2mω (â + â†) (3.97)

P̂ = −i
√
mω

2 (â − â†) (3.98)

[X̂, P̂] = iI (3.99)
where we remind the reader that the operators â and â† may be understood by their action
on number states

∣∣∣n〉 (
〈
x
∣∣∣n〉, are the Hermite functions introduced in (1.25)). i.e.

â†
∣∣∣n〉 =

√
n+ 1

∣∣∣n+ 1
〉

(3.100)

â
∣∣∣n〉 =

√
n
∣∣∣n〉. (3.101)

For the following study, the unit carrying terms such as the angular frequency ω, and
mass m will be immaterial. The pair of equations (3.97) and (3.98) can be traded in for

X̂ = 1√
2

(â + â†) (3.102)

P̂ = − i√
2

(â − â†) (3.103)

without losing anything of mathematical importance. It can be shown that the commutation
relation (3.99) will remain unchanged [19]. We now present the generalization of the position-
momentum pair (3.102) (3.103).

Q̂ϕ = 1√
2

(ei ϕ â + e−i ϕ â†) (3.104)

P̂ϕ = −i√
2

(ei ϕ â − e−i ϕ â†). (3.105)

Notice that the latter pair of operators reduces to the former when ϕ = 1. It can be shown
that canonical commutation relations will remain the same as those for the usual position
and momentum operators, independent of ϕ, i.e.

[Q̂ϕ, P̂ϕ] = iI, (3.106)

meaning that the algebras
{
I, Q̂ϕ, P̂ϕ

}
are equivalent (via isomorphism) to the algebra
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{
I, X̂, P̂

}
for all ϕ ∈ R. It is interesting to note that for any ϕ ∈ R

[Q̂ϕ, Q̂ϕ+ π
2
] = iI, (3.107)

meaning that the quadrature momenta are π
2 rotations of the respective conjugate operator

in some sense.

3.4.2 Unitarily Related Countable Mixtures. The case for Coher-
ent States.

Let P̂ϕ be some quadrature momentum and let ρ̂ =
∣∣∣0〉〈0∣∣∣ (the vacuum state of the Fock

basis, the underlying Hilbert space here is L2
(
R
)

but could be generalized to L2
(
Rn
)

with
ease). Let us tackle the QSD problem for the mixture

N∑
k=1

pke
−itxkP̂ϕ

∣∣∣0〉〈0∣∣∣eitxkP̂ϕ (3.108)

where all of the xi are unequal to each other. It will be instructive to reorganize the way in
which the unitary operator e−itxkP̂ϕ is expressed. i.e.

e−itxkP̂ϕ = e
−itxk

(
−i√

2
(eiϕâ−e−iϕâ†)

)
= e

−txk√
2

(eiϕâ−e−iϕâ†) =

= eαk(t)â†−αk(t)∗â, where αk(t) := txke
−iϕ

√
2

.

The unitary operator eαk(t)â†−αk(t)∗â will henceforth be denoted D̂(αk(t)). This operator is
known as the displacement operator [6] [19]. Some of its most useful properties are presented
below. Let

∣∣∣α〉 be some coherent state [19] (also see Chapter 7 of [6]) , then

D̂(β)D̂(γ) = D̂(β + γ)e(βγ∗−β∗γ)/2 (3.109)

D̂(β)
∣∣∣α〉 = e(βα∗−β∗α)/2

∣∣∣β + α
〉

(3.110)

D̂(α)
∣∣∣0〉 =

∣∣∣α〉 (3.111)

The final two properties above give merit to the name "displacement operator" of D̂(β).
Using the latter properties, (3.108) may be shown to be a mixture of coherent states.

Proof.
N∑
k=1

pke
−itxkP̂ϕ

∣∣∣0〉〈0∣∣∣eitxk
ˆ̂Pϕ =

N∑
k=1

pkD̂(αk(t))|0⟩⟨0|D̂†(αk(t)) = (3.112)

N∑
k=1

pk
∣∣∣αk(t)〉〈αk(t)∣∣∣ (3.113)
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It can be shown that
∣∣∣〈β∣∣∣α〉∣∣∣2 = e−|β−α|2 [19] for two arbitrary coherent states

∣∣∣α〉 and∣∣∣β〉. The latter implies that F
(∣∣∣αk(t)〉〈αk(t)∣∣∣, ∣∣∣αp(t)〉⟨αp(t)|) = e− t2

2 |xk−xp|2 , using (2.47).

Proof.
F
(∣∣∣αk(t)〉〈αk(t)∣∣∣, ∣∣∣αp(t)〉⟨αp(t)∣∣∣) (3.114)∣∣∣〈αk∣∣∣αp〉∣∣∣2 = e−|αk(t)−αp(t)|2 = (3.115)

e
−| txke−iϕ

√
2

− txpe−iϕ
√

2
|2 = e− t2

2 |xk−xp|2 . (3.116)

Due to the latter it is indeed clear that F
(∣∣∣αk(t)〉〈αk(t)∣∣∣, ∣∣∣αp(t)〉⟨αp(t)∣∣∣) → 0 as t → ∞

for k ̸= p. This in turn means that the mixture (3.108) will be asymptotically discriminable.
i.e. using the generalization of Theorem 3.29, Theorem 3.2.6 we have

lim
t→∞

min
POVM

{
1 −

N∑
i=1

piTr
{

M̂i

∣∣∣αi(t)〉〈αi(t)∣∣∣M̂ †
i

}}
≤ (3.117)

lim
t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipj

√
F
(∣∣∣αi(t)〉〈αi(t)∣∣∣, ∣∣∣αj(t)〉⟨αj(t)∣∣∣) = (3.118)

lim
t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipje

− t2
4 |xi−xj |2 = lim

t→∞

N∑
i=1

N∑
j;j ̸=i

√
pipj lim

t→∞
e− t2

4 |xi−xj |2 = 0 (3.119)

3.4.3 Unitarily Related Countable Mixtures of Arbitrary Displaced
Pure Initial States

Continuing the work of the previous subsection, we proceed with a generalization of the
countable mixture (3.108). In this case, the initial state

∣∣∣ψ〉〈ψ∣∣∣ will be taken to be pure, but
otherwise arbitrary. i.e.

N∑
k=1

pkρ̂k,t :=
N∑
k=1

pkD̂(αk(t))
∣∣∣ψ〉〈ψ∣∣∣D̂†(αk(t)) (3.120)

where again, αk(t) = txke
−iϕ

√
2 . We will prove that F

(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞ yet again via

a bound characterizing the exponential decay as t → ∞; the associated QSD problem will
hence be solvable in the asymptotic limit t → ∞. This will consequently prove that under
such a generalization the asymptotic QSD problem is still solvable. Before we begin the
proof, we must introduce a few definitions.
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Definition 3.4.1 (Segal-Bargmann Space)

The Segal-Bargmann space is the space of holomorphic functions F (z) in n complex
variables satisfying the square-integrability condition:

∥F (z)∥2
SB := π−n

∫
Cn

|F (z)|2 exp(−|z|2) dz < ∞ (3.121)

where dz denotes the 2n-dimensional Lebesgue measure on Cn. It is a Hilbert space
with respect to the associated inner product:

⟨F (z) | G(z)⟩ = π−n
∫
Cn
F (z)G(z) exp(−|z|2) dz. (3.122)

Lemma 3.4.1 (Simple Lemma)

If the Holomorphic function F (z) is in the Segal-Bargmann space, then so is the
function F (2z).

Proof. This follows from the fact that both 2 and F (z) are in the Segal-Bargmann space and
are therefore measurable with respect to the measure e−|α|2d2α, and from the fact that the
composition of measurable functions is measurable.

We now prove that F
(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞, but first state it as a Claim.

Claim 3.4.1 (Convergence Claim)

F
(
ρ̂k,t, ρ̂p,t

)
→ 0 as t → ∞ (3.123)

Proof.
D̂†(αp(t))D̂(αk(t)) = 1

π

∫
D̂†(αp(t))

∣∣∣α〉〈α∣∣∣D̂(αk(t))d2α = (3.124)

1
π

∫ ∣∣∣α− αp(t)
〉〈
α− αk(t)

∣∣∣d2α (3.125)

Where we used the resolution of the identity afforded by the overcomplete set of coherent
states, i.e. 1

π

∫ ∣∣∣α〉〈α∣∣∣d2α = I [19]. Hence,

〈
ψ
∣∣∣D̂†(αp(t))D̂(αk(t))

∣∣∣ψ〉 = 1
π

∫ 〈
ψ
∣∣∣α− αp(t)

〉〈
α− αk(t)

∣∣∣ψ〉d2α. (3.126)

The functions

e− 1
2 |α−αk|2ΨSB((α− αk)∗) := e− 1

2 |α−αk|2
∞∑
n=0

〈
n
∣∣∣ψ〉((α− αk)∗)n√

n!
=
〈
α− αk

∣∣∣ψ〉 (3.127)

where ΨSB(α∗) belongs to the Segal-Bargman space for an arbitrary
∣∣∣ψ〉 in the appropriate
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space of square-integrable functions. We may therefore write

|
〈
ψ
∣∣∣D̂†(αp(t))D̂(αk(t))

∣∣∣ψ〉| =
∣∣∣∣∣ 1π
∫
e− 1

2 |α−αp|2Ψ∗
SB((α−αp)∗)e− 1

2 |α−αk|2ΨSB((α−αk)∗)d2α

∣∣∣∣∣ ≤

(3.128)
1
π

∫
e− 1

2 |α−αp|2e− 1
2 |α−αk|2|ΨSB((α− αp)∗)||ΨSB((α− αk)∗)|d2α = (3.129)

1
π

∫
e− 1

4 |α−αp|2e− 1
4 |α−αk|2e− 1

4 |α−αp|2e− 1
4 |α−αk|2|ΨSB((α−αp)∗)||ΨSB((α−αk)∗)|d2α ≤ (3.130)

1
π

( ∫
e− 1

2 |α−αp|2e− 1
2 |α−αk|2d2α

)( ∫
e− 1

2 |α−αp|2e− 1
2 |α−αk|2|ΨSB((α−αp)∗)|2|ΨSB((α−αk)∗)|2d2α

)
≤

(3.131)
1
π

( ∫
e− 1

2 |α−αp|2e− 1
2 |α−αk|2d2α

)∥∥∥∥∥e− 1
2 |α|2|ΨSB(α∗)|2

∥∥∥∥∥
L∞(C)

∥∥∥∥∥e− 1
2 |α|2|ΨSB(α∗)|2

∥∥∥∥∥
L1(C)

= (3.132)

π

2

∥∥∥∥∥e− 1
2 |α|2|ΨSB((α)∗)|2

∥∥∥∥∥
L∞

∥∥∥ΨSB(2α∗)
∥∥∥
SB

2
e− 1

2

(
ℜ(αp)−ℜ(αk)

)2e− 1
2

(
ℑ(αp)−ℜ(ℑk)

)2 =

(3.133)
π

2

∥∥∥∥∥e− 1
2 |α|2|ΨSB(α∗)|2

∥∥∥∥∥
L∞

∥∥∥ΨSB(2α∗)
∥∥∥
SB

e− ℜ(e−iϕ)2t2
4

(
xp−xk

)2e− ℑ(e−iϕ)2t2
4

(
xp−xk

)2 =

(3.134)
π

2

∥∥∥∥∥e−|α|2|ΨSB(2α∗)|2
∥∥∥∥∥
L∞

∥∥∥ΨSB(2α∗)
∥∥∥
SB

e
− t2

4

(
xp−xk

)2

(3.135)

The fucntion ΨSB(α∗) is in the Segal-Bargmann space, hence its accociated Segal-Bargmann
norm exists and the fucntion |e−|α|2|ΨSB(2α∗)|2 is bounded and

∥∥∥ΨSB(2α∗)
∥∥∥
SB

is just a
constant by Lemma 3.4.1. We, therefore, conclude that for k ̸= p

F
(
ρ̂p(t), ρ̂k(t)

)
=
∣∣∣〈ψ∣∣∣∣D̂†(αp(t))D̂(αk(t))|ψ

〉∣∣∣∣2 ≤ (3.136)

π

2

∥∥∥∥e−|α|2|ΨSB(2α∗)|2
∥∥∥∥
L∞

∥∥∥ΨSB(2α∗)
∥∥∥
SB

e
− t2

4

(
xp−xk

)2

(3.137)

which goes to zero as t → 0 due to the Gaussian term.

The associated QSD problem is therefore progressively more solvable as t → ∞. The
benefit of the approach taken in Claim 3.4.1 is the ability to bound the fidelity terms by
the Gaussian term. The weakness of Claim 3.4.1 is that it only gives a handle on unitarily
related mixtures that are generated by displacement operators. If more general unitarily
related mixtures are to be studied, we will need to introduce new ideas.

Another approach.

We have used some tools from quantum optics to argue the asymptotic decay of the
fidelity of the states ρ̂p and ρ̂k when k ̸= p. However, we could also use the spectrum
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of the displacement operators D̂(αk(t)) in order to compute F
(
ρ̂p, ρ̂k

)
directly as opposed

to bounding it, like we did in proving Claim 3.4.1. Recall that D̂(αk(t)) = e−itxkP̂ϕ for
αk(t) = txke

−iϕ
√

2 . The quadrature momentum P̂ϕ has purely absolutely continuous spectrum
[3]. We will denote its generalized eigenvectors as |pϕ⟩ (Dirac delta distributions), where the
action of p̂ϕ on its generalized eigenvectors is, of course, the following.

P̂ϕ|pϕ⟩ = pϕ|pϕ⟩. (3.138)

We may now compute D̂(αk(t))
∣∣∣ψ〉 = e−itxkP̂ϕ

∣∣∣ψ〉 =
∫
e−itxkpϕψ(pϕ)

∣∣∣pϕ〉dpϕ, which leads to
the equation

F
(
ρ̂p, ρ̂k

)
=
∣∣∣∣∣
∫

|ψ(pϕ)|2e−it(xk−xp)pϕdpϕ

∣∣∣∣∣
2

(3.139)

which is a continuous function decaying asymptotically as t → ∞ due to the Reimann-
Lebesgue lemma since |ψ(pϕ)|2 is in L1(R). The hurdle of this approach is the necessity to
compute the Fourier transform of the function |ψ(pϕ)|2, which could be a daunting task.
Both approaches, the one leading to (3.139) and the one leading to the bound (3.137) have
their merit.

3.5 Countable Mixtures of Unitarily Related Families.
In this section, we will be restricting our attention to a specific type of ensemble {pi, ρ̂i,t}Ni=1.

Namely, those where
ρ̂i,t := e−itxiB̂

∣∣∣ψ〉〈ψ∣∣∣eitxiB̂ (3.140)

for some self-adjoint operator B̂ and some pure density operator
∣∣∣ψ〉〈ψ∣∣∣ (i.e.

(∣∣∣ψ〉〈ψ∣∣∣)2
=∣∣∣ψ〉〈ψ∣∣∣) both acting in an arbitrary Hilbert space H . All of the operators ρ̂i,t are unitary

evolutions of the density operator ρ̂, with the dynamics being generated respectively by the
operators xiB̂. We will see that the asymptotic discriminability of the mixture ∑N

i=1 piρ̂i,t
will depend on the spectral properties of the operators B̂k and the nature of the pure state∣∣∣ψ〉〈ψ∣∣∣. Using Theorem 3.2.3 we have the following QSD estimate.

min
POVM

(
1 −

N∑
i=1

piTr
{
M̂iρ̂i,tM̂

†
i

})
≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i,t, ρ̂j,t

)
= (3.141)

∑
i

∑
j;j ̸=i

√
pipj

∣∣∣〈ψ∣∣∣e−it(xj−xi)B̂
∣∣∣ψ〉∣∣∣ (3.142)

If fully solvable asymptotic QSD is desired, then it is a necessary and sufficient condition
that the elements

∣∣∣〈ψ∣∣∣e−it(xj−xi)B̂
∣∣∣ψ〉∣∣∣ of the sum above decay to zero as t → ∞ for all

i, j; i ̸= j; it can be shown to be a necessary condition by using the bound in Theorem 3.2.2.
With the latter in mind, let us first introduce some elements from spectral theory in order
to understand when QSD is asymptotically possible for the setting at hand.
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3.5.1 Spectral Decomposition and Spectral Measures

Given some Self-Adjoint operator Â it is known that the residual spectrum of a self-adjoint
operator is empty [8][3]. Hence, given that Â is self-adjoint we have

Spec
(
Â
)

= Specp
(
Â
)

∪ Specac
(
Â
)

∪ Specsc
(
Â
)

(3.143)

where the subscripts ac and sc stand for absolutely continuous and singular continuous
respectively. In order to more formally define absolutely continuous and singular continuous
spectra let us consider an arbitrary

∣∣∣ψ〉 ∈ H ; H being the Hilbert space that Â acts in.
The spectral theory then says that there exists a unique measure µψ such that [3]

〈
ψ
∣∣∣Â∣∣∣ψ〉 =

∫
R
λdµψ(λ). (3.144)

The measure µψ is often called the spectral measure generated by
∣∣∣ψ〉. By the Lebesgue

Decomposition Theorem one may decompose any measure of this type into its point measure,
absolutely continuous measure, and singular continuous measure components. i.e.

µψ = µψ,p + µψ,ac + µψ,sc. (3.145)

Of particular interest to us will be the properties of the respective Fourier transforms of each
of the measures on the right-hand side of (3.145). It is a consequence of the Riemann Lebe-
gues Lemma that the Fourier transform of the measure µψ,ac (absolutely continuous with
respect to the Lebesgue measure) is a function that decays to zero as the argument becomes
large. On the other hand, It can be shown that the Fourier transform of µψ,p will exhibit
quasiperiodic behavior while the Fourier transform of µψ,sc (e.g.Cantor distribution (devils
staircase), Dirac measure) is known not to decay to zero in general; However, there exist sin-
gular continuous measures with respective Fourier transform exhibiting the decay properties
expected from the Fourier transforms of absolutely continuous measures. We shall be partic-
ularly interested in the subset of measures continuous with respect to the Lebesgue measures
whose Fourier transform decays to zero. These will provide the necessary dynamics for the
bound (3.2.3) to converge to zero for the case of the mixture presented above, i.e. ∑N

i=1 piρ̂i,t .

Let Â be a self-adjoint operator acting in some Hilbert space H . The Hilbert space that
Â acts in may furthermore be expressed as a direct sum of three invariant subspaces; one
corresponding to each type of spectrum. Namely, from [8]

H = Hp ⊕ Hac ⊕ Hsc. (3.146)

Recall that the QSD problem may be solved asymptotically iff ∀i ̸= j∣∣∣〈ψ∣∣∣e−it(xj−xi)B̂
∣∣∣ψ〉∣∣∣ → 0 (as t → ∞) (3.147)

Using the spectral theorem for unitary operators [3] it immediately follows that (3.147) may
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be written as ∣∣∣〈ψ∣∣∣e−it(xj−xi)B̂
∣∣∣ψ〉∣∣∣ =

∣∣∣∣ ∫
R
e−it(xj−xi)λdµψ(λ)

∣∣∣∣ = (3.148)∣∣∣∣ ∫
R
e−it(xj−xi)λdµψ,p(λ)

∣∣∣∣+ ∣∣∣∣ ∫
R
e−it(xj−xi)λdµψ,ac(λ)

∣∣∣∣+ ∣∣∣∣ ∫
R
e−it(xj−xi)λdµψ,sc(λ)

∣∣∣∣. (3.149)

It is now clear why we are interested in the Fourier transforms of the p, ac and sc measures
of the operator B̂. If we expect

∣∣∣〈ψ∣∣∣e−it(xj−xi)B̂
∣∣∣ψ〉∣∣∣ → 0 as t → ∞, then we know that it will

be necessary (but not sufficient!) for
∣∣∣ψ〉 ∈ Hac ⊕ Hsc [59]; first and foremost, Hac ⊕ Hsc

would of course have to be non-empty. However, not all
∣∣∣ψ〉 ∈ Hac ⊕ Hsc will yield the

desired dynamics as we already discussed; everything in Hac will yield the dynamics we
want but not everything in Hsc. We must hence constrain ourselves further the subspace
Hrc consisting only of the states

∣∣∣ψ〉 whose associated measure µψ is a Rajchman measure
[59] (defined below). The associated invariant subspace is exactly what we need.

Definition 3.5.1 (Rajchman Measure:)

A finite Borel probability measure µ on R is called a Rajchman measure if it satisfies

lim
t→∞

µ̂(t) = 0 (3.150)

where µ̂(t) :=
∫
R e

2iπtxdµ(x) , t ∈ R.

Theorem 3.5.1 (The Rajchman Subspace is a Closed Subspace)

Let Â be a self-adjoint operator acting on some arbitrary Hilbert space H , then the
set of vectors in H for which the spectral measure is a Rajchman measure, i.e.

Hrc :=
{∣∣∣ψ〉 | lim

t→∞

〈
ψ
∣∣∣e−itÂ

∣∣∣ψ〉 = 0
}
, (3.151)

is a closed subspace which is invariant under e−isÂ[59].

Lemma 3.5.1 (If µψ is Rajchman, then µϕ,ψ is Rajchman)

Let B̂ be some self-adjoint operator acting on a Hilbert space H . Furthermore, let∣∣∣ψ〉 ∈ Hrc and
∣∣∣ϕ〉 ∈ H , then the respective measure µϕ,ψ is Rajchman.

Proof. ∫
e−itλµϕ,ψ(λ) =

〈
ϕ
∣∣∣e−itB̂

∣∣∣ψ〉 =
〈
ϕ
∣∣∣(P̂rce

−itB̂
∣∣∣ψ〉) = (3.152)(〈

ϕ
∣∣∣P̂rc

)
e−itλ

∣∣∣ψ〉 =
〈
ξ
∣∣∣e−itB̂

∣∣∣ψ〉 (3.153)

where P̂rc is the projector onto the subspace Hrc and
∣∣∣ξ〉 := P̂rc

∣∣∣ϕ〉 ∈ Hrc. We have used
the fact that the Rajchman subspace is invariant under the action of e−itB̂. Now, using the
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polarization identity (see [63] chapter 2 Excersise 2.1) we have

〈
ξ
∣∣∣e−itB̂

∣∣∣ψ〉 = 1
4

3∑
k=0

ik

(〈ξ∣∣∣+ (−i)k
〈
ψ
∣∣∣)e−itB̂

(∣∣∣ξ〉+ ik
∣∣∣ψ〉)

 = (3.154)

1
4

3∑
k=0

ik
〈
χk
∣∣∣e−itB̂

∣∣∣∣χk〉 (3.155)

where we have defined
∣∣∣χk〉 :

∣∣∣ξ〉 + ik
∣∣∣ψ〉. Hrc is a linear space, hence

∣∣∣χk〉 ∈ Hrc for
k = 0, 1, 2, 3. Piecing all together.

∫
e−itλµϕ,ψ(λ) = 1

4

3∑
k=0

ik
〈
χk
∣∣∣e−itB̂

∣∣∣∣χk〉 = 1
4

3∑
k=0

ik
∫
e−itλdµχk

(λ). (3.156)

As t → ∞
∫
e−itλdµχk

(λ) → 0. Hence
∫
e−itλµϕ,ψ(λ) → 0 as t → ∞.

We conclude this subsection with the following proposition.

Proposition 3.5.1 (Full Solvability of QSD for URM of Pure States)

Consider the model described in this section by the states (3.66).
∣∣∣ψ〉 ∈ Hrc corre-

sponding to B̂ iff

lim
t→∞

min
POVM

pE

{{
pi, e

−itxiB̂
∣∣∣ψ〉〈ψ∣∣∣eitxiB̂

}N
i=1
, {M̂l

}K
l=1

}
= 0 (3.157)

Proof. This immediately follows from Theorems 3.2.3 and 3.2.2.

3.6 Unitarily Related Mixtures of Finite Mixtures.
Let us now consider the case where

ρ̂ =
N∑
i=1

piρ̂i ∈ S(H ), (3.158)

with
ρ̂i =

M∑
j=1

ηij
∣∣∣ϕij〉〈ϕij∣∣∣ (3.159)

With all of the
∣∣∣ϕij〉〈ϕij∣∣∣ ∈ S(H ) and ∑

j ηij = 1. In such a case we may again utilize
Theorem 3.2.3 to begin with.

min
POVM

pE(t) ≤
∑
i

∑
j;j ̸=i

√
pipj

√
F
(
ρ̂i, ρ̂j

)
(3.160)
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however, the fidelities in this case are not immediately manageable owing to the fact that
both ρ̂i and ρ̂j are booth mixed states. To overcome this hurdle we will use a bound for
quantum fidelities found in [66]. Namely,

Theorem 3.6.1 (Fidelity Bound Koenraad and Milan [66])

Let ∑i piρ̂i be an arbitrary countable mixture and let σ̂ be an arbitrary density oper-
ator; both acting on the same arbitrary Hilbert space. Then,√√√√F(∑

i

piρ̂i, σ̂
)

≤
∑
i

√
pi

√
F
(
ρ̂i, σ̂

)
(3.161)

Note that this theorem for the general case of an infinite mixture would require that
√
pi ∈ ℓ

(
R
)

in or more knowledge regarding the fidelities √
pi

√
F
(
ρ̂i, σ̂

)
in order for us to

profit from such a bound.

Applying Theorem 3.6.1 twice we may further bound (3.160) to obtain

min
POVM

pE ≤
∑
i

∑
j;j ̸=i

√
pipj

M∑
k=1

M∑
k′=1

√
ηik

√
ηik′

√
F
(∣∣∣ϕik〉〈ϕik∣∣∣, ∣∣∣ϕjk′

〉〈
ϕjk′

∣∣∣) = (3.162)

∑
i

∑
j;j ̸=i

√
pipj

M∑
k=1

M∑
k′=1

√
ηikηjk′

∣∣∣〈ϕik∣∣∣ϕjk′

〉∣∣∣ (3.163)

We hence see that the optimal probability error may be controlled by the inner products∣∣∣〈ϕik∣∣∣ϕjk〉∣∣∣ (i ̸= j), which are relatively easy to compute. We now provide a generalization
to Proposition 3.5.1.

Theorem 3.6.2 (Full Solvability of QSD for URM of Finite Mixtures)

Let H be infinite-dimensional Hilbert space. Let B̂ be a self-adjoint operator acting
in H with a non-empty Rajchman subspace. Furthermore, let ρ̂i := ∑Mi

j=1 ηij
∣∣∣ϕij〉〈ϕij∣∣∣

be finite mixtures in S
(
H
)

for each i. Then,

lim
t→∞

min
POVM

pE

{{
pi, e

−itxiB̂ρ̂ie
itxiB̂

}N
i=1
, {M̂l

}K
l=1

}
= 0 (3.164)

iff all of the
∣∣∣ϕij〉 ∈ Hrc of B̂.

Proof. First we assume that
∣∣∣ϕij〉 ∈ Hrc of B̂ for all ij. Now, using (3.163) we have

min
POVM

pE(t) ≤
∑
i

∑
j;j ̸=i

√
pipj

Mi∑
k=1

Mj∑
k′=1

√
ηikηjk′

∣∣∣〈ϕik∣∣∣e−it(xj−xi)B̂
∣∣∣ϕjk〉∣∣∣ (3.165)
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Since all of the sums above are finite, we need only worry about the limits

lim
t→∞

∣∣∣〈ϕik∣∣∣e−it(xj−xi)B̂
∣∣∣ϕjk〉∣∣∣ (3.166)

but by Lemma 3.5.1 these all go to zero as t → ∞. We have therefore proven one direction
of the theorem.

Going the other way we shall prove the contrapositive. Assume that
∣∣∣ϕij〉 /∈ Hrc for all

ij. Using Theorem 3.2.2, followed by Theorem 3.2.5, we have

min
POVM

pE(t) ≥ 1
2
∑
i

∑
j;j ̸=i

pipjF
(
e−txiB̂ρ̂ie

txiB̂, e−txjB̂ρ̂je
txiB̂

)
≥ (3.167)

1
2
∑
i

∑
j;j ̸=i

pipj

min
{
Mi,Mj

}
∑
k=1

√
ηikηjk

∣∣∣〈ϕik∣∣∣e−it(xj−xi)B̂
∣∣∣ϕjk〉∣∣∣2

2

(3.168)

In this case the terms
∣∣∣〈ϕik∣∣∣e−it(xj−xi)B̂

∣∣∣ϕjk〉∣∣∣2 will be bounded away from zero infinitely often.
Making minPOVM pE(t) bounded away from zero infinitely often. Hence, asymptotic QSD is
impossible. The theorem has been proved.

Corollary 3.6.1 (QSD 2 with ∑
j
√
ηij < ∞ for all j)

Theorem 3.6.2 may be extended to the cases where the finite mixtures ρ̂i are replaced
by infinite mixtures ρ̂i := ∑∞

j=1 ηij
∣∣∣ϕij〉〈ϕij∣∣∣, where now ∑∞

j=1 ηij = 1 for all i, if∑
j
√
ηij < ∞ for all i. The argument follows by applying the dominated convergence

theorem to the first part of our proof for Theorem 3.6.2.

Corollary (3.6.1) gives us a way to work with the spectral decomposition of the operators
in the mixtures ∑i pie

−itxiB̂ρ̂ie
itxiB̂, so long as the sequence

√
λij of square-rooted eigenvalues

of each ρ̂i is summable with respect to j.

3.7 Uncountable Mixtures.
Consider the case where instead of a countable mixture, as seen in (3.1), we have an

uncountable one.
ρ̂t :=

∫
p(x)ρ̂x,tdx (3.169)

where ρ̂x,t := e−itxB̂
∣∣∣ψ〉〈ψ∣∣∣eitxB̂,

∣∣∣ψ〉〈ψ∣∣∣ some initial state in S
(
H
)
, H an infinite dimen-

sional Hilbert space, B̂ a self-adjoint operator acting in H and
∫
p(x) = 1. The states ρ̂x,t

are akin to the archetypal ensembles which are the main focus of QSD. In the literature [22]
[25] [73] [28] for QSD, one almost always encounters ensembles of the form ∑

i piρ̂i ( pi is a
discrete probability distribution) and the task is of course to find a POVM that minimizes∑
i piTr

{
ρ̂i − M̂ iρ̂iM̂

†
i

}
while satisfying ∑i M̂

†
iM̂i = I. If we wanted to discriminate all of

the ρ̂x from each other, with high precision, we would expect that F
(
ρ̂x, ρ̂y) should go to
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zero as t → ∞ for all x ̸= y. To see that the latter is not the case in general, recall that
F
(
ρ̂x, ρ̂y) = |

〈
ψ
∣∣∣e−it(y−x)B̂

∣∣∣ψ〉|. Indeed, for fixed x ̸= y, |
〈
ψ
∣∣∣e−it(y−x)B̂

∣∣∣ψ〉| → 0 as t → ∞
whenever

∣∣∣ψ〉 ∈ Hrc (Rajchman subspace associated with B̂). However, if we choose y and
x at every t such that x − y = α

t
, then it is clear that no matter how large t is there will

always be x and y (x ̸= y) such that F
(
ρ̂x, ρ̂y) = |

〈
ψ
∣∣∣e−iαB̂

∣∣∣ψ〉|. If α is small, then F
(
ρ̂x, ρ̂y)

may be close to one. We therefore abandon the idea of discriminating all of the ρ̂x from one
another and will instead support ourselves on the already existing theory of QSD for count-
able mixtures. We will do this by defining an N -mixture associated with the uncountable
mixture (3.169). To motivate the latter let us first consider a partition of the support of
p(x) with N terms, i.e. ∪N

i=1Ωi = supp
{
p(x)

}
. Using this partition we may rewrite (3.169)

as follows. ∫
p(x)ρ̂xdx =

N∑
i=1

∫
Ωi

p(x)ρ̂x,tdx. (3.170)

Next we define some new terms, pi :=
∫

Ωi
p(x)dx and p̄(x) := p(x)

pi
. With these terms we

further rewrite (3.170).i.e.

N∑
i=1

∫
Ωi

p(x)ρ̂x,tdx =
N∑
i=1

piΛi,t

(∣∣∣ψ〉〈ψ∣∣∣) (3.171)

Where Λi,t

(∣∣∣ψ〉〈ψ∣∣∣) :=
∫

Ωi
p̄(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx :=
∫

Ωi
p̄(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx. Notice
that in (3.172) pi is a discrete probability distribution and each Λi,t

(∣∣∣ψ〉〈ψ∣∣∣) is indeed a
density operator (not pure). The fact that the t = 0 state was defined to be pure was
immaterial, so we replaced it with a general state in the following. Let us now formally
define an N -mixture of a particular uncountable mixture.

Definition 3.7.1 (N-mixture)

Let ρ̂ :=
∫
p(x)ρ̂xdx be some uncountable mixture. We call the following an N -mixutre

of ρ̂ with respect to some partition ∪N
i=1Ωi (of N elements) of the support of p(x).

N∑
i=1

piρ̂i,t (3.172)

where pi :=
∫

Ωi
p(x)dx, p̄(x) := p(x)

pi(t) and ρ̂i,t :=
∫

Ωi
p̄(x)ρ̂x,tdx. We emphasize that this

is not an approximation but merely a way of rewriting ρ̂; also note that the ρ̂i are
density operators.

Given the mixture (3.172), we can use the theory of countable mixture QSD in order
to estimate an optimal POVM that minimizes ∑i piTr

{
ρ̂i,t − M̂ i,tρ̂i,tM̂

†
i,t

}
(in this case

ρ̂i,t :=
∫

Ωi
p̄(x)ρ̂x,tdx), and in the case where finding the minimizing POVM is not possible

we may bound the min error by making use of the Knill Barnum bound (3.29) [28] in order
to study the theoretical effectiveness of the related QSD problem with respect to t, i.e. we
would like to know if the associated QSD problem is fully solvable with respct to t or not.
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We now formalize the QSD problem for uncountable mixtures (UQSD).

Definition 3.7.2 (QSD for uncountable mixtures (UQSD))

Let H be an arbitrary Hilbert space. Now, consider the unaccountably mixed state
ρ̂t :=

∫
p(x)e−itxB̂ρ̂eitxB̂dx, p(x) a probability density, ρ̂ ∈ S

(
H
)

some initial state,
and B̂ a self adjoint operator (acting in H ). Furthermore, consider an N -mixture of
ρ̂t with respect to some partition of the support of p(x), ∪N

i=1Ωi (N elements). We
call the associated optimization problem below the UQSD problem induced by the
partition ∪N

i=1Ωi,

min
POVM

N∑
i=1

pi

(
1 − Tr

{
M̂iρ̂i,tM̂

†
i

})
(3.173)

where now pi :=
∫

Ωi
p(x)dx, p̄i(x) := p(x)

pi
and ρ̂i,t :=

∫
Ωi
p̄i(x)e−itxB̂ρ̂eitxB̂dx.

An uncountable number of N -mixtures may be generated for any given uncountable
mixture. If no constraints on the magnitudes of the Ωi are posed, trivial N mixtures
might be devised. e.g. consider the case of a 2-Mixture for some uncountable mixture∫
p(x)ρ̂xdx. For every ε > 0 we may choose Ω2 such that

∥∥∥ ∫Ω2
p̄(x)ρ̂xdx

∥∥∥
1

= ε. Conse-
quently

∥∥∥ ∫Ω1
p̄(x)ρ̂xdx

∥∥∥
1

≥ 1 − ε where Ω1 = supp
{
p(x)

}
− Ω2. Using the Hellström bound

we get the following result.

min
POVM

pE

{{
pi,
∫

Ωi

p(x)ρ̂xdx
}2

i=1
, {M̂l

}2

l=1

}
= (3.174)

1
2 − 1

2

∥∥∥∥∥
∫

Ω1
p(x)ρ̂xdx−

∫
Ω2
p(x)ρ̂xdx

∥∥∥∥∥
1

≤ (3.175)

1
2 − 1

2

∣∣∣∣∣
∥∥∥∥ ∫

Ω1
p(x)ρ̂xdx

∥∥∥∥∥
1

−
∥∥∥∥ ∫

Ω2
p(x)ρ̂xdx

∥∥∥∥∥
1

∣∣∣∣∣ = (3.176)

1
2 − 1

2

∣∣∣∣∣
∥∥∥∥ ∫

Ω1
p(x)ρ̂xdx

∥∥∥∥∥
1

− ε

∣∣∣∣∣ ≤ 1
2 − 1

2

∣∣∣∣∣1 − 2ε
∣∣∣∣∣ ≈ 0 (3.177)

We will hence only be interested in the UQSD optimization problem induced by partitions
∪N
i=1Ωi with magnitude constraints. i.e. ∆i,L ≤ |Ωi| ≤ ∆i,U for every i. e.g. |Ωi| > ∆ for

all i. Which N -mixtures are physical and which are not is a question that has not been
addressed as of yet and would be and be a problem best addressed through the lens of
Quantum Metrology [15], a topic which is beyond the scope of this work.

Now that we have defined QSD for uncountable mixtures, we may ask ourselves if an
adaptation of Proposition 3.5.1 is possible for this setting. Morally speaking this must be
so; however, due to the intractability of the fidelity F

(
ρ̂, σ̂

)
for the case where both ρ̂ and

σ̂ are not pure states, the argument is not as direct as it was in Proposition 3.5.1 and owing
to the uncountably mixed nature of the operators ρ̂i,t from (3.173) we may not apply the
techniques all of the techniques used in proving Theorem 3.6.2. In fact, we may only prove
that the initial state ρ̂ ∈ S

(
Hrc

)
of B̂ is a necessary condition for the associated asymptotic



3.7. UNCOUNTABLE MIXTURES. 91

UQSD problem to be fully solvable. We prove the latter result for UQSD and then present
a conjecture.

Proposition 3.7.1 (Necessary Condition for Full Solvability of UQSD
for URM)

Consider the setup of Definition 3.7.2. For the UQSD optimization problem induced
by some partition ∪N

i=1Ωi to be fully solvable as t → ∞, ρ̂ ∈ S
(
Hrc

)
(Rajchman

subspace of the operator B̂) is a necessary condition.

Proof. First, let us consider the spectral decomposition of the initial state ρ̂. Namely,

ρ̂ =
∑
i

λi
∣∣∣ψi〉〈ψi∣∣∣ (3.178)

Because ρ̂ ∈ S
(
Hrc

)
it is the case that the

∣∣∣ψi〉 are all in Hrc. Now, using Theorem 3.2.2
followed by Corollary 3.2.1 two times, subsequently followed by an application of Theorem
3.2.5 we see that

min
POVM

N∑
i=1

pi

(
1 − Tr

{
M̂iρ̂i,tM̂

†
i

})
≥ 1

2
∑
i

∑
j;j ̸=i

pipjF (ρ̂i,t, ρ̂j,t) ≥ (3.179)

1
2
∑
i

∑
j;j ̸=i

pipj

∫
Ωi

p̄i(x)
∫

Ωj

p̄j(y)F
(
e−itxB̂ρ̂eitxB̂, e−ityB̂ρ̂eityB̂

)
dy

2

dx

2

= (3.180)

1
2
∑
i

∑
j;j ̸=i

pipj

∫
Ωi

p̄i(x)
∫

Ωj

p̄j(y)F
(
e−itxB̂∑

i

λi
∣∣∣ψi〉〈ψi∣∣∣eitxB̂, e−ityB̂∑

i

λi
∣∣∣ψi〉〈ψi∣∣∣eityB̂

)
dy

2

dx

2

≥

(3.181)

1
2
∑
i

∑
j;j ̸=i

pipj

∫
Ωi

p̄i(x)
∫

Ωj

p̄j(y)
∑

i

λi
∣∣∣〈ψi∣∣∣e−it(x−y)B̂

∣∣∣ψi〉∣∣∣2
2

dy

2

dx

2

(3.182)

If
∣∣∣ψi〉 /∈ Hrc for all i, then the

∣∣∣〈ψi∣∣∣e−it(x−y)B̂
∣∣∣ψi〉∣∣∣2 will not decay to zero for x ̸= y; this

behaviour is necessary for the lower bound (3.182) to go to zero. We have therefore proven
the necessity of the condition

∣∣∣ψi〉 ∈ Hrc and hence ρ̂ ∈ S
(
Hrc

)
; more than this we have

also given a lower bound which may be used to estimate how much UQSD problems deviates
from 0.

As mentioned already in this work, it is unknown whether or not the hypothesis of
Proposition 3.7.1 is sufficient to guarantee that an UQSD problem induced by some partition
∪N
i=1Ωi is asymptotically fully solvable. We formally conjecture that this is the case below.



92CHAPTER 3. ASYMPTOTIC QSD FOR COUNTABLE AND UNCOUNTABLE MIXTURES

Conjecture 3.7.1 (iff for Proposition 3.7.1)

Assuming the same definitions used hitherto for the following symbols. The UQSD
optimization problem induced by some partition ∪N

i=1Ωi is asymptotically fully solvable
iff ρ̂ ∈ S

(
Hrc

)
of the operator B̂.

As a finishing note, we motivate Conjecture 3.7.1. For this, we will need the super fidelity.

Theorem 3.7.1 (Super Fidelity [72])

For any two density operators ρ̂ and σ̂, then

F
(
ρ̂, σ̂

)
≤ Tr

{
ρ̂σ̂

}
+
√(

1 − Tr
{
ρ̂2
})(

1 − Tr
{
σ̂2
})

(3.183)

Let us now consider the uncountable unitarily related mixture
∫
p(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx

where
∣∣∣ψ〉 ∈ Hrc of B̂. Let p(x) be a bimodal probability density p(x) = 1

2(p1(x) + p2(x)) of
two probability densities with non overlapping compact support. Let ∆1 ⊂ R and ∆2 ⊂ R
be their supports respectively. Now, for ∆1 and ∆2 with any magnitude, i.e. δ1 :=

∣∣∣∆1

∣∣∣ and
δ2 :=

∣∣∣∆2

∣∣∣ and for any ε1 > 0 we may find a time domain T := [0, Tε] so that

Tr


∫ pi(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx

2 ≥ 1 − ε (3.184)

for all t ∈ T and i = 1, 2. Furthermore, with T fixed, for any ε2 > 0 we can choose
dist

(
∆1,∆2

)
such that

Tr


∫
p1(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx
∫
p2(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx

 < ε2 (3.185)

Proof. Fix ε2 > 0 and let t′ ∈ T . Now,

Tr


∫
p1(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx
∫
p2(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx

 = (3.186)

∫ ∫
p1(x)p2(x)

∣∣∣∣〈ψ∣∣∣e−it(y−x)B
∣∣∣ψ〉∣∣∣∣2dxdy (3.187)∣∣∣ψ〉 ∈ Hrc of B̂ hence limα→∞

〈
ψ
∣∣∣e−iαB̂

∣∣∣ψ〉 = 0. This means that there exists a δ > 0 such
that for all α > δ we have |

〈
ψ
∣∣∣e−iαB̂

∣∣∣ψ〉| ≤ √
ε2. Choosing dist

(
∆1.∆2

)
t′ > δ we therefore

have ∫ ∫
p1(x)p2(x)

∣∣∣∣〈ψ∣∣∣e−it(y−x)B
∣∣∣ψ〉∣∣∣∣2dxdy ≤

∫ ∫
p1(x)p2(x)|√ε2|2dxdy = ε2 (3.188)
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for all t ∈ [t′, T ].

With the latter and the use of Theorem 3.7.1 we have the following result.

F

∫ p1(x)e−itxB̂
∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx,

∫
p2(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx

 ≤ ε2 + ε1 (3.189)

meaning that we may approximately solve the UQSD problem for the 2-mixture ∑2
i=1 piρ̂i

where p1 = p2 = 1
2 and of course ρ̂i :=

∫
pi(x)e−itxB̂

∣∣∣ψ〉〈ψ∣∣∣eitxB̂dx. We can proceed similarly
for a multi-mode probability density. We can always place the lumps far enough apart from
one order in such a way that we may observe decay in the optimal probability of error long
before we see an error in our bound due to our super fidelity estimate estimates. It is clear
that

∣∣∣ψ〉 ∈ Hrc of B̂ plays a key role in going from (3.187 to (3.188); without this assumption
our conclusion is not attainable.

3.7.1 UQSD Using a Particular PVM
We have already seen a successful POVM scheme for the discretely mixed state QSD

problem in Theorem 3.3.1. We can adapt such a setting to the case of an analogous
uncountable mixture; we assume the same transnational dynamics for the states ρ̂x,t :=
e−itxB̂ρ̂eitxB̂, we may apply a similar POVM as was applied in Theorem 3.3.1, but in
this case the POVM will be a countably infinite set of projector operators, i.e. an N -
mixture per Definition 3.7.1 ( N may be infinity if the support of p(x) is the entire real
line). We will assume a specific partitioning of the support of p(x) uniform in time. Namely
∆i = ((xi−1+xi

2 ), (xi+xi+1
2 )) for 1 < i < N − 1, ∆1 :=

(
inf

(
supp

(
p(x)

))
, (x0+x1

2 )
)

, ∆N :=(
(xN−1+xN

2 ), sup
(
supp

(
p(x)

)))
and {xi}N−1

i=0 is a net of the support of p(x). Furthermore

let Ωi,t := (t(xi−1+xi

2 ), t(xi+xi+1
2 )) for 1 < i < N − 1, Ω1,t :=

(
inf

(
tsupp

(
p(x)

))
, t(x0+x1

2 )
)

,

ΩN,t :=
(
t(xN−1+xN

2 ), t sup
(
supp

(
p(x)

)))
. We will use the same N for all t To tackle the

uncountable QSD problem, Definition 3.7.2, for this associated N -mixture we utilize the
PVM {P̂Ωi,t

}i, which are projectors projecting onto the subspaces generated by the subset
Ωi,t. Using such a POVM the respective uncountable QSD problem is bounded as follows.

min
POVM

N∑
i=1

pi(t)
(

1 − Tr
{ ∫

∆i

p̄i(t, x)M̂i,tρ̂x,tM̂
†
i,tdx

})
≤ (3.190)

1 −
N∑
i=1

pi(t)
∫

∆i

p̄i(x)
∫ t

xi+1+xi
2 −tx

t
xi−1+xi

2 −tx
K(x′, x′)dx′dx. (3.191)

We see that as t becomes large (3.191) indeed approaches 0, meaning that there exists
a POVM such that the QSD problem, Definition (3.7.2), is approximately solved with
high accuracy. The latter follows from the fact that the limits of integration txi−1+xi

2 −
tx and txi+1+xi

2 − tx are respectively negative and positive for all x ∈ Ωi,t (except for
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the endpoints, which form a set of measure zero; causing no issues in the integration).
The latter means that the sets

[
txi−1+xi

2 − tx, txi+1+xi

2 − tx
]

approaches R as t → ∞.

Hence,
∫ txi+1+xi

2 −tx

t
xi−1+xi

2 −tx
K(x′, x′)dx′ → 1 as t → ∞ which leads to (3.191) going to zero as t → ∞.

Although a very specialized case, this Uncountable QSD problem instills further confidence
in Conjecture 3.7.1 and gives a schematic of how one might generate estimates for uncount-
able QSD in the cases where the Hilbert space in question is some space of square-integrable
functions and the unitary dynamics in question are translational.

3.8 What if the B̂ is Finite-Dimensional.
The previous discussions might lead one to believe that there is no asymptotic QSD for

the case where Ĥ is a finite-dimensional Hilbert paces. Indeed homologs to Theorem 3.6.2,
Corollary 3.6.1, Propositions 3.5.1 and 3.7.1 is not possible per se, but one may approximately
solve the associated QSD problem within some relevant time domain t ∈ [0, T ]. To see this
let us once again consider the inner products

〈
ψi,t

∣∣∣ψj,t〉 that we scrutinized in the previous
sections. In this case, however, B̂ will be finite-dimensional and have pure point spectrum
(eigenvalues) bi with associated eigenvectors

∣∣∣bi〉.〈
ψi,t

∣∣∣ψj,t〉 =
〈
ψ0

∣∣∣e−it(xj−xi)B̂
∣∣∣ψ0
〉

=
∑
l

e−it(xj−xi)bl |
〈
bj
∣∣∣ψ0
〉
|2. (3.192)

A sum such as 3.192 is an almost-periodic function. There are various ways in which almost-
periodic functions are defined, but we will stick with the definition posed by [58] (which
interestingly enough, is a paper authored by Niels Bohr’s brother Harold Bohr.).

Definition 3.8.1 (Uniformly almost-periodic functions)

A function is said to be uniformly almost-periodic if it lies in the closure of the trigono-
metric polynomials with respect to the uniform norm ∥f∥∞ := supx |f(x)|

It is clear that (3.192) lies in the closure of the space of trigonometric polynomials since
each of the terms in the sum is a periodic function of t which may be approximated to
arbitrary precision via a series of complex exponentials with the same period. The sum
(3.192) may therefore be estimated by a multi-indexed sum (one index for each term in
(3.192)) which consists of trigonometric monomials. In [58] it was proven that Definition
3.8.1 is equivalent to the existence of relatively dense sets of so-called ε-periods, for all ε > 0;
i.e. translations by τ(ε) ( a time parameter dependent on ε) of the t resulting in the following
bounds.

|f(t+ τ(ε)) − f(t)| ≤ ε (3.193)
where f(x) is some almost-periodic function.

Our hurdles stemming from (3.192) may now be formally described. We would like to
achieve an approximate asymptotic QSD in t for the case where B̂ acts in a finite-dimensional
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Hilbert space. For this to occur we will need the inner products 3.192 corresponding to each
B̂ to be small. Being a finite-dimensional operator, B̂ does not have an associated Rajchman
subspace. We must therefore rely on the largeness of the dimension of B̂ and the size of the
particular time domain of interest. We have that the respective function (3.192) is almost-
periodic. Hence, given some arbitrary time domain t ∈ [0, T ] there exists the possibility
that ∣∣∣∣∑

l

e−i0(xj−xi)bl |⟨bj|ψ0⟩|2 −
∑
l

e−iτ(xj−xi)bj |⟨bl|ψ0⟩|2
∣∣∣∣ = (3.194)

∣∣∣∣∑
l

|⟨bl|ψ0⟩|2 −
∑
j

e−iτ(xj−xi)bj |⟨bj|ψ0⟩|2
∣∣∣∣ =

∣∣∣∣1 −
∑
l

e−iτ(xj−xi)bl |⟨bj|ψ0⟩|2
∣∣∣∣ < ε (3.195)

for some arbitrary small ε > 0 and 0 ≤ τ ≤ T . i.e. it could be the case that our operator
(4.40) returns to the state it was in at t= 0 after having evolved for an amount τ of the unit
time. Since the time window of interest is [0, T ] and τ ≤ T , this would mean that we can
not achieve SBS in such a time domain. This of course follows immediately from the bound
in Theorem 3.2.2. In such a case the lower bound of Theorem 3.2.2 is maximized.

If however, we are given some time interval [0, T ], where
〈
ψi,t

∣∣∣ψj,t〉 is sharply decay-
ing with respect to some time scale τ much smaller than T (the relevant time frame) and〈
ψi,t

∣∣∣ψj,t〉 stabilizes to zero long before t approaches T , then we may conclude that conver-
gence Asymptotic QSD with respect to the time scale τ is achievable. To see that the latter
may be achieved let us consider the case where

∣∣∣ψ0
〉

is some tensor product state

∣∣∣ψ0
〉

=
Nmac⊗
k=1

∣∣∣ψk0〉 (3.196)

and
B̂ =

Nmac∑
k=1

B̂k (3.197)

with each
∣∣∣ψk0〉 ∈ Hk (finite dimensional Hilbert spaces) and B̂k some linear self-adjoint

operator acting in Hk. In this case

〈
ψi,t

∣∣∣ψj,t〉 =
Nmac⊗

k=1

〈
ψk0
∣∣∣
(e−it(xj−xi)

∑Nmac
k=1 gkB̂k

)Nmac⊗
k=1

∣∣∣ψk0〉
 = (3.198)

Nmac⊗
k=1

〈
ψk0
∣∣∣
Nmac⊗

k=1
e−it(xj−xi)gkB̂k

∣∣∣ψk0〉
 =

Nmac∏
k=1

〈
ψk0
∣∣∣e−itgk(xj−xi)B̂k

∣∣∣ψk0〉 (3.199)

Nmac∏
k=1

∑
j

e−itgk(xj−xi)bk
j

∣∣∣〈bkj ∣∣∣ψk0〉∣∣∣2. (3.200)
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Each term in the latter product consists of a bounded sum∣∣∣∣∑
l

e−itgk(xj−xi)bk
l

∣∣∣〈bkj ∣∣∣ψk0〉∣∣∣2∣∣∣∣ ≤ 1. (3.201)

The magnitude of (3.200) is therefore bounded between 0 and 1, since it is a product of terms
whose respective magnitudes are also bounded between 0 and 1. If Nmac is large enough,
then for a given τ ∈ [0, T ] it can be shown that

∣∣∣〈ψi,t∣∣∣ψj,t〉∣∣∣ may be bounded from above via a
time-independent bound of desired magnitude. We now formalize the latter. Let 0 < ε′ < 1
and assume that for all k, 1 −

∣∣∣∑l e
−itgk(xj−xi)bk

l

∣∣∣ > ε′
k > 0 for all t ∈ [τ, T ] (τ > 0 and

τ << T ), then the functions ∑l e
−itgk(xj−xi)bk

l

∣∣∣〈bkj ∣∣∣ψk0〉∣∣∣2 do not have ε-periods for ε = ε′
k. i.e.

∣∣∣∣1 −
∑
l

e−itgk(xj−xi)bk
l

∣∣∣〈bj|ψ0
〉
|2
∣∣∣∣ ≥

∣∣∣∣1 −
∣∣∣∣∑

l

e−itgk(xj−xi)bk
l |⟨bj|ψ0⟩|2

∣∣∣∣ = (3.202)

1 −
∣∣∣∣∑

l

e−itgk(xj−xi)bk
l |
〈
bj
∣∣∣ψ0
〉
|2 ≥ ε′

k. (3.203)

Furthermore, ∣∣∣∑
l

e−itgk(xj−xi)bk
l

∣∣∣〈bj∣∣∣ψ0
〉∣∣∣2∣∣∣ ≤ 1 − ε′

k (3.204)

for all t ∈ [τ, T ]. Note that 1 − ε′
k < 1, hence picking up from (3.200) we have∣∣∣∣∣∣

Nmac∏
k=1

∑
j

e−itgk(xj−xi)bk
j

∣∣∣〈bkj ∣∣∣ψk0〉∣∣∣2
∣∣∣∣∣∣ ≤

Nmac∏
k=1

(1 − ε′
k) ≤ (1 − min

k
ε′
k)Nmac . (3.205)

We may therefore conclude that if we desire∣∣∣∣∣∣
Nmac∏
k=1

∑
j

e−it(xj−xi)bk
j

∣∣∣〈bkj ∣∣∣ψk0〉∣∣∣2
∣∣∣∣∣∣ ≤

Nmac∏
k=1

(1 − ε′
k) = δ (3.206)

for some small δ > 0, we can choose Nmac = ln(δ)
ln(1−mink ε

′
k

) in order to obtain such a bound. We,
therefore, see that the size of the parameter Nmac is responsible for the smallness of (3.200).
Returning now to the question of asymptotic QSD for finite-dimensional Hilbert spaces; we
have seen that such a QSD problem may be approximately solved over a time domain [τ, T ]
in a sense, given a large enough Nmac. Very quickly after τ time elapses (3.200) attains the
smallness desired and therefore we achieve an approximately discriminable state for the time
interval [τ, T ] with τ << T .



Chapter 4

SBS for Discrete Variables

4.1 Work by Jarek et all

In recent times significant attention has been given to a family of multipartite states
named Spectrum Broadcast Structures (SBS) [39] [40] [41] [54]. Since its genesis, the theory
of SBS has been used as a tool in the discipline of Quantum Foundations; particularly
in the theories of Quantum Decoherence and Quantum Darwinism[12][32][42][43]. Recently,
quantum darwinism and SBS theory have been shown to be equivalent under certain technical
assumptions[44]. Motivating the theory of quantum darwinism and the theory of SBS is the
question of objectivity in the quantum world. To avoid philosophical contention [39] [40]
and[41] provide a definition of objectivity motivated by properties of classical dynamical
systems. The multipartite quantum mechanical state satisfying such properties is called a
SBS. The definition of objectivity proposed in [39] is:

Definition 4.1.1 (Objectivity [39][40][41])

A state of the system S exists objectively if many observers can find out the state of
S independently, and without perturbing it.

There are two clauses in the definition above that are ambiguous, namely, "can find out
the state of S" and "without perturbing it". The first of these means that any of the observers
may locally solve a QSD (3.21) estimation problem that allows the observer to identify the
state of the system S by proxy. The second clause, "without perturbing it" may be formalized
by introducing a distance measure. We will only be using the trace distance, but different
distance measures may be more relevant in other scenarios. The following definition proposed
in [39] is a mathematical formalization of Definition 4.1.1 and is what we will refer to as a
SBS.
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Definition 4.1.2 (SBS [39][40][41])

A Spectrum Broadcast Structure is a multipartite state (also called joint state) of a
system S and an environment E, consisting of sub-environments E1, E2, ..., ENE :

ρ̂SBS =
∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i (4.1)

where {|i⟩}i is some basis in the system’s space, pi are probabilities summing to one,
and all states ρ̂E

k

i are perfectly distinguishable in the following sense:

F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 (4.2)

for all i ̸= j and for all k = 1, ..., NE. Recall that F (..., ...) is the quantum fidelity, and
is defined as F

(
ρ̂, σ̂

)
:=
∥∥∥√ρ̂

√
σ̂
∥∥∥2

1
(2.44).

In [39] it is argued that SBS satisfies the desired definition of objectivity and that it
is the only structure that satisfies such a definition. The argument for why the observer
monitoring (i.e. employing measurements characterized via a POVM) El may find out the
state of S independently is the following. Let us analyze the local state pertaining to El; to
do this we partially trace out the degrees of freedom pertaining to the system S and all of
the environments Ek with the exception of the lth environment. i.e. from (4.1) we obtain

∑
i

pi

∏
k ̸=l

TrEk

{
ρ̂E

k

i

}⟨i|i⟩ρ̂El

i =
∑
i

piρ̂
El

i . (4.3)

Notice that this is a mixed state. If F
(
ρ̂E

l

i , ρ̂
El

j

)
= 0 for i ̸= j then the QSD problem may be

optimally solved. This means that there exists a POVM which the observer monitoring the
environment El may utilize to conduct measurements on El yielding perfect distinguishability
between the possible outcomes of the mixture (4.3). Furthermore, the state ρ̂E

l

i is correlated
with the state

∣∣∣i〉〈i∣∣∣ of S in the sense that when S is found to be in the state
∣∣∣i〉〈i∣∣∣ the lth

environment will be found in the state ρ̂E
l

i . Owing to the perfect distinguishability between
the states ρ̂E

l

i for all i, there is no ambiguity regarding the state of S given that El is found
to be in the state ρ̂E

l

i . Since l was taken to be arbitrary it is clear that any environmental
observer may find out the state of S faithfully so long as F

(
ρ̂E

l

i , ρ̂
El

j

)
= 0 for i ̸= j is satisfied.

To argue non-disturbance (a similar approach follows for approximate non-disturbance)
we first re-emphasize that the "can find out" in Definition 4.1.1 formally means that for
every Ek there exists a POVM {ÊEk

i }i that solves the respective local QSD problem, i.e.
that discriminates perfectly the mixture (4.3). {⊗NE

k=1 ÊEk

ik
}i1,i2,...,iNE

will hence be a POVM
acting on S

(
HS

⊗NE
k=1 HEk

)
. If the POVM optimally solving the local QSD problem for

each environment El does so in a non-perturbing way, i.e. not changing the state after the
associated measurement quantum channel has been applied in the trace distance sense, then
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the measurement associated with the POVM {⊗NE
k=1 ÊEk

ik
}i1,i2,...,iNE

may be shown to also be
non-disturbing with respect to the trace distance. i.e. it can be shown that

1
2

∥∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i1

∑
i2

...
∑
iNE

∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
∥∥∥∥∥

1
= 0 (4.4)

where
(

M̂Ek

ik

)†
M̂Ek

ik
= ÊEk

ik
. i.e. Given the perfect distinguishability of the ρ̂E

k

i for each k,

a POVM {ÊEk

ik
}ik may be devised such that

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
= δiki. (4.5)

With (4.5) in mind, we may estimate the trace distance in (4.4).

1
2

∥∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i1

∑
i2

...
∑
iNE

∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

ik
ρ̂E

k

i

(
M̂Ek

ik

)†
∥∥∥∥∥

1
= (4.6)

1
2

∥∥∥∥∥∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k

i −
∑
i

pi|i⟩⟨i| ⊗
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥∥

1
≤ (4.7)

1
2
∑
i

pi

∥∥∥∥∥
NE⊗
k=1

ρ̂E
k

i −
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥∥

1
(4.8)

To proceed we introduce the following lemma.

Lemma 4.1.1 (Telescopic inequality [41])

Let Âk and ˆ̂
Bk be trace class operators for all k. Then,

∥∥∥∥ N⊗
k=1

Âk −
N⊗
k=1

B̂k

∥∥∥∥
1

≤ (4.9)

N∑
j=1

( j−1∏
k=1

∥∥∥Âk
∥∥∥

1

)
×
∥∥∥Âj − B̂j

∥∥∥
1

×
(

N∏
k=j+1

∥∥∥B̂k
∥∥∥

1

)
(4.10)

Using Lemma 4.1, (4.8) may be bounded as follows.

1
2
∑
i

pi

∥∥∥∥∥
NE⊗
k=1

ρ̂E
k

i −
NE⊗
k=1

M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥∥

1
≤ 1

2

NE∑
k=1

∑
i

pi

∥∥∥∥∥ρ̂Ek

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
∥∥∥∥∥

1
. (4.11)

We claim that the distinguishability criterion F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 ( i ̸= j) for all k is a neces-

sary and sufficient condition for (4.11) to vanish. For the case of perfect distinguishability,
the sufficiency is immediately clear since each ÊEk

i may be chosen to be a projector onto
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the domain of ρ̂E
k

i respectively, meaning that M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
= ρ̂E

k

i which in turn implies

that
∥∥∥ρ̂Ek

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†∥∥∥
1

= 0. The argument becomes more transparent in the case

where all of the ρ̂E
k

i are projectors. In such a case we simply choose ÊEk

i = ρ̂E
k

i .

The distinguishability condition F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 (i ̸= j) for all k is of course an idealiza-

tion; in practice there will always be some error involved in the distinguishability measures
F
(
ρ̂E

k

i , ρ̂E
k

j

)
= εk for all k where εk > 0 will depend on dynamical parameters such as time.

In such a case we must tread more carefully. In the previous paragraph, we did not need
to calculate or estimate the trace norm present because we showed that the operator in the
trace norm was the zero operator. If the perfect distinguishability condition is not satisfied,
then we will need to compute/estimate the sum over i of trace norms in (4.11). Although

we may use Theorem 3.2.3 in order to bound minPOVM
∑
i piTr{ρ̂E

k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†
} by

fidelitites of the set of density matrices {ρ̂E
k

i }i , i.e.

min
POVM

Tr
{

ρ̂E
k

i − M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†}
≤
∑
i

∑
j;j ̸=i

√
pipj

√
F (ρ̂i, ρ̂i) (4.12)

for all k, we do not yet have tools that aid us in the estimation of∑i pi

∥∥∥∥ρ̂Ek

i −M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†∥∥∥∥
1
.

It is clear by (4.12) that if the fidelities F
(
ρ̂E

k

i , ρ̂E
k

j

)
(i ̸= j) are arbitrarily small, then for

all k the local QSD error minPOVM Tr
{

ρ̂E
k

i −M̂Ek

i ρ̂E
k

i

(
M̂Ek

i

)†}
will also become arbitrarily

small. To show that a similar argument holds for the right-hand side of the inequality (4.11)
we will prove in the following section a bound for (4.8) that will depend only on fidelities
between the set of density operators {ρ̂E

k

i }i, and vanish as the fidelities F
(
ρ̂E

k

i , ρ̂E
k

j

)
(i ̸= j)

decay to zero for all k.

4.2 Bounding the Super Quantum State Discrimina-
tion Problem (SQSD)

For this section, we shall be simplifying our notational conventions since we shall not
need the superscripts on the density operators used in the previous section. Consider the
mixed state ∑N

i=1 piρ̂i, where ∑N
i=1 pi = 1 and the ρ̂i are pure states in a Hilbert space

of dimension greater than N , i.e. one-dimensional projections
∣∣∣ψi〉〈ψi∣∣∣, where

{∣∣∣ψi〉}N
i=1

are
normalized vectors. Assuming that

∣∣∣ψi〉 are linearly independent, we may use the well-known
Gram-Schmidt procedure to define an associated orthonormal set.
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Theorem 4.2.1 (Gram-Schmidt Procedure)

Assume that the set
{∣∣∣ψ〉

i

}N
i=1

, of vectors in some vector space V , is a linearly inde-
pendent set. Then the following construction yields an orthonormal set.∣∣∣ϕ1

〉
=
∣∣∣ψ1
〉

(4.13)

∣∣∣ϕ2
〉

= 1
α2

(∣∣∣ψ2
〉

−
〈
ϕ1

∣∣∣ψ2
〉∣∣∣ϕ1

〉)
(4.14)

...∣∣∣ϕN〉 = 1
αN

(∣∣∣ψN〉−
N−1∑
k=1

〈
ϕk
∣∣∣ψN〉∣∣∣ϕk〉

)
(4.15)

Here αi :=
∥∥∥∥∣∣∣ψi〉 − ∑i−1

k=1

〈
ϕk
∣∣∣ψi〉∣∣∣ϕk〉∥∥∥ =

√
1 −∑i−1

k=1

∣∣∣〈ϕk∣∣∣ψi〉∣∣∣2 for i > 1 and

α1 = 1 are the respective normalization constants. We have Span
{{∣∣∣ψi〉}N

i=1

}
=

Span
{{∣∣∣ϕi〉}N

i=1

}
.

The orthonormal set
{∣∣∣ϕi〉}N

i=1
may be used for the construction of a PVM , namely

{∣∣∣ϕi〉〈ϕi∣∣∣}N
i=1

∪
{
I −

N∑
i=1

∣∣∣ϕi〉〈ϕi∣∣∣
}

(4.16)

which we will use it to estimate minPOVM
∑N
i=1 pi

∥∥∥ρ̂i−M̂iρ̂iM̂
†
i

∥∥∥
1
, this minimization problem

will be named the Super Quantum State Discrimination problem (SQSD) due to its bounding
of the associated QSD problem (i.e. Tr

{
Â
}

≤
∥∥∥Â∥∥∥

1
):

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min

POVM

N∑
i=1

pi
∥∥∥ρ̂i − M̂iρ̂iM̂

†
i

∥∥∥
1

≤ (4.17)

min
PVM

N∑
i=1

pi
∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1

≤
N∑
i=1

pi

∥∥∥∥ρ̂i −
∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥

1
(4.18)

Lemma 4.2.1 (Trace Distance Lemma)

Let ρ̂i and
∣∣∣ϕi〉 be defined as above; also let i > 1, then

∥∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥∥

1
≤ 2

i−1∑
k=1

|⟨ϕk|ψi⟩| (4.19)
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Proof. ∥∥∥∥ρ̂i −
∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥

1
=
∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣ρ̂i∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥

1
= (4.20)

∥∥∥∥(∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣)ρ̂i
∣∣∣ψi〉〈ψi∣∣∣+ ∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i(∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣)∥∥∥∥

1
≤ (4.21)

∥∥∥∥(∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣)ρ̂i
∣∣∣ψi〉〈ψi∣∣∣∥∥∥∥

1
+
∣∣∣∣∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i(∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣)∥∥∥∥

1
≤ (4.22)

∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥
1

∥∥∥∥ρ̂i∣∣∣ψi〉〈ψi∣∣∣∥∥∥∥
1

+
∥∥∥∥∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i∥∥∥∥

1

∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥
1

= (4.23)

∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥
1

∥∥∥∥ρ̂i∣∣∣ψi〉〈ψi∣∣∣∥∥∥∥
1

+
∥∥∥∥∣∣∣ϕi〉〈ϕi∣∣∣ρ̂i∥∥∥∥

1

 ≤ (4.24)

∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥
1

∥∥∥ρ̂i∥∥∥1

∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣∥∥∥∥
1

+
∥∥∥∥∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥

1

∥∥∥ρ̂i∥∥∥1

 ≤ (4.25)

2
∥∥∥∥∣∣∣ψi〉〈ψi∣∣∣− ∣∣∣ϕi〉〈ϕi∣∣∣∥∥∥∥

1
= 2

√
1 − |

〈
ψi
∣∣∣ϕi〉|2 = (4.26)

2

√√√√√1 −

∣∣∣∣∣∣ 1
αi

(
1 −

i−1∑
k=1

|
〈
ϕk
∣∣∣ψi〉|2

)∣∣∣∣∣∣
2

= 2

√√√√√√√√1 −

∣∣∣∣∣∣
(

1 −∑i−1
k=1 |

〈
ϕk
∣∣∣ψi〉|2)√(

1 −∑i−1
k=1 |

〈
ϕk
∣∣∣ψi〉|2)

∣∣∣∣∣∣
2

(4.27)

= 2

√√√√1 − 1 +
i−1∑
k=1

|
〈
ϕk
∣∣∣ψi〉|2 = 2

√√√√ i−1∑
k=1

|
〈
ϕk
∣∣∣ψi〉|2 ≤ 2

i−1∑
k=1

|
〈
ϕk
∣∣∣ψi〉| (4.28)

where we have used the fact that∑i−1
k=1 |

〈
ϕk
∣∣∣ψi〉|2 ≤ 1 in the last line (Bessel’s inequality).

The term ∑i−1
k=1

∣∣∣〈ϕk∣∣∣ψi〉| may be understood by analyzing it through the scope of its
related Gram Determinant. We present this as a lemma.
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Lemma 4.2.2 (Gramm Determinants)

∣∣∣ϕj〉 = 1√
Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψ1

∣∣∣ψ1
〉 〈

ψ1

∣∣∣ψ2
〉

. . .
〈
ψ1

∣∣∣ψj〉〈
ψ2

∣∣∣ψ1
〉 〈

ψ2

∣∣∣ψ2
〉

. . .
〈
ψ2

∣∣∣ψj〉
... ... . . . ...〈

ψj−1

∣∣∣ψ1
〉 〈

ψj−1

∣∣∣ψ2
〉

. . .
〈
ψj−1

∣∣∣ψj〉∣∣∣ψ1
〉 ∣∣∣ψ2

〉
. . .

∣∣∣ψj〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.29)

where

Dj :=

∣∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψj⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψj⟩

... ... . . . ...
⟨ψj|ψ1⟩ ⟨ψj|ψ2⟩ . . . ⟨ψj|ψj⟩

∣∣∣∣∣∣∣∣∣∣
(4.30)

with the definitions
∣∣∣ϕ1
〉

:=
∣∣∣ψ1
〉
, D0 := 1 and D1 = 1; making consistent the case

where j = 1 and k = 0, 1 for
∣∣∣ϕi〉 and Dk respectively. The vertical lines to the left

and to the rigth of the above arrays indicate that a determinant is being taken.

In determinant form,
〈
ψi
∣∣∣ϕk〉 may now be written as follows.

〈
ψi
∣∣∣ϕk〉 = 1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψ1

∣∣∣ψ1
〉 〈

ψ1

∣∣∣ψ2
〉

. . .
〈
ψ1

∣∣∣ψk〉〈
ψ2

∣∣∣ψ1
〉 〈

ψ2

∣∣∣ψ2
〉

. . .
〈
ψ2

∣∣∣ψk〉
... ... . . . ...〈

ψk−1

∣∣∣ψ1
〉 〈

ψk−1

∣∣∣ψ2
〉

. . .
〈
ψk−1

∣∣∣ψk〉〈
ψi
∣∣∣ψ1
〉 〈

ψi
∣∣∣ψ2
〉

. . .
〈
ψi
∣∣∣ψk〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.31)

The power of viewing the states
∣∣∣ϕi〉 in their determinant form is that now we need only

compute inner products between elements of the set
{∣∣∣ψi〉}N

i=1
in order to estimate the effec-

tiveness of the PVM (4.16) in approximating a solution to the SQSD problem with PVM,
i.e. minPVM

∑N
i=1 pi

∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥
1
. Recall that the states

{∣∣∣ψi〉}N
i=1

are normalized and let
us consider the case where

〈
ψi
∣∣∣ψj〉 = εij for all i ̸= j ∈ {1, ..., N}, where εij are complex

numbers satisfying |εij| ≤ δ for all i ̸= j ∈ {1, .., N}, where δ is small. Since, under this
assumption, all entries of the last column of the matrix (4.31) are small, this would also
imply that

∥∥∥∥ρ̂i − |ϕi⟩⟨ϕi|ρ̂i|ϕi⟩⟨ϕi
∥∥∥∥

1
is small for all i, thanks to Lemma 4.2.1.

The above estimates imply the following theorem.
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Theorem 4.2.2 (Bound for the Super Quantum State Discrimination Op-
timization Problem)

Consider a mixed state of the form ∑N
i=1 piρ̂i,

∑N
i=1 pi = 1, where ρ̂i :=

∣∣∣ψi〉〈ψi∣∣∣ are
pure states acting on a Hilbert space of dimension greater than N . Furthermore,
assume that the states {

∣∣∣ψi〉}i are linearly independent. Then

min
POVM

N∑
i=1

pi

∥∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥∥∥
1

≤
N∑
i=2

pi
i−1∑
k=1

∣∣∣∣ Mk,i

Dk−1Dk

∣∣∣∣∣ (4.32)

where

Mk,i := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

... ... . . . ...
⟨ψk−1|ψ1⟩ ⟨ψk−1|ψ2⟩ . . . ⟨ψk−1|ψk⟩
⟨ψi|ψ1⟩ ⟨ψi|ψ2⟩ . . . ⟨ψi|ψk⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.33)

Dk :=

∣∣∣∣∣∣∣∣∣∣
⟨ψ1|ψ1⟩ ⟨ψ1|ψ2⟩ . . . ⟨ψ1|ψk⟩
⟨ψ2|ψ1⟩ ⟨ψ2|ψ2⟩ . . . ⟨ψ2|ψk⟩

... ... . . . ...
⟨ψk|ψ1⟩ ⟨ψk|ψ2⟩ . . . ⟨ψk|ψk⟩

∣∣∣∣∣∣∣∣∣∣
(4.34)

Proof. The proof follows directly from Lemma 4.2.2 and Lemma 4.2.1, and the fact that for
i = 1 the corresponding projector is simply

∣∣∣ψi〉〈ψi∣∣∣ making the i = 1 term zero.

It is with the bound provided by Theorem 4.2.2 that we may estimate the right-hand side
of (4.11). Notice that the magnitudes of the elements of the determinants found in (4.32)
and (4.34) are all bounded by the square root of the respective fidelities. i.e noting that [9]

〈
ψi
∣∣∣ψj〉 ≤

∣∣∣〈ψi∣∣∣ψj〉∣∣∣ =
√
F
(∣∣∣ψi〉〈ψi∣∣∣, ∣∣∣ψj〉〈ψj∣∣∣) (4.35)

With the latter relationship, it is clear that the bound of Theorem 4.2.2 will consist purely
of fidelities as was alluded to in the previous section.

4.3 Dynamical Monitoring for discrete variables
Although SBS are interesting objects of study without regard to anything else, more

intriguing is studying the dynamical convergence of some time-dependent density operator
ρ̂t to a SBS state. If we now apriori that a certain type of multifaceted quantum mechanical
system should behave objectively per Definitions 4.1.1 and 4.1.2, then the states of said
multifaceted systems should exhibit convergence to some SBS state in physically relevant
time domains which often include the asymptotical case of t → ∞, where t is the dynamical
parameter in question. Time dependence may in general be generated by some arbitrary
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time-dependent quantum map. However, we will focus on the quantum maps generated
from quantum-measurement limit type interaction Hamiltonians of the von Neumann type
[18] which are central to the theory of quantum decoherence [32]. Before we get to the
heart of the matter concerning these types of quantum maps, we shall define the concept of
quantum-measurement limit and the von Neumann type Hamiltonains.

4.3.1 Quantum-Measurement Limit
The principal models studied in SBS literature [39][40][41] are of the quantum-measurement

limit type, meaning SBS that arise from dynamics generated by Hamiltonians in which
the interaction term between the system S and the environment E greatly dominates, i.e.
Ĥtot ≈ Ĥint (tot means total and int indicates "interaction terms"). Such an approximation
is valid when the system and the environments evolve with respect to a time scale that is
much larger than that of the time scale corresponding to that of the interactive dynamics. In
this work, we will furthermore narrow our focus to interaction Hamiltonains of the following
form

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (4.36)

A Hamiltonian of the form (4.36) is said to be of the von Neumann type [18]. The corre-
sponding time evolution operator is hence

Ût = e−itX̂⊗
∑N

k=1 gkB̂k . (4.37)

4.3.2 Partial Tracing
In what follows we will follow the approach taken in [41] and revert back to the notational

conventions used in the first section. We consider a quantum system interacting with N
macroscopic environments. We assume that the joint initial state has the product form:

ρ̂ = ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0 (4.38)

In the sate (4.38) we write the subscript 0 in Ek
0 in order to emphasize that this is the initial

state of the kth environment Ek, similarly, we use the subscript S0 to highlight the initial
state of the system. We evolve our total initial state using the evolution operator (4.37).

ρ̂t =
(
e−itX̂⊗

∑N

k=1 gkB̂k

)
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

(
eitX̂⊗

∑N

k=1 gkB̂k

)
. (4.39)

To study the state of the subsystem formed by the system S and the first NE environments,
we take the partial trace (Definition 1.4.1) of the time-evolved density operator over the
remaining ME := N −NE environments. The result is,

dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
(4.40)
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where, again, {
∣∣∣i〉}ds

i=1 are the eigenvectors of X̂, with corresponding eigenvalues {xi}dS
i=1 and

we have the following definitions.

ρ̂E
k
t

x,y := e−itxgkB̂k ρ̂E
k
0 eitygkB̂k (k = 1, 2, ..., NE) (4.41)

ρ̂E
k
t

x := e−itxgkB̂k ρ̂E
k
0 eitxgkB̂k (k = 1, 2, ..., NE). (4.42)

σi,j := ⟨i|ρ̂S0 |j⟩ (4.43)

γki,j(t) := Tr
{
ρ̂E

k
t

xi,xj

}
(4.44)

Γ(i, j, , t) :=
N∏

n=NE+1
γni,j(t) (4.45)

Let us now define the following quantum map [9].

Λ
(

ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0

)
:=

dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
(4.46)

The right-hand side of (4.46) may be compactly rewritten as

Ut

(
Et{ρ̂S0} ⊗

NE⊗
k=1

ρ̂E
k
0

)
(4.47)

where
Ut

(
Â
)

:= e−itX̂⊗
∑NE

k=1 gkB̂k

(
Â
)
eitX̂⊗

∑NE
k=1 gkB̂k (4.48)

and
Et(Ĉ) :=

dS∑
i,j=1

⟨i|Ĉ|j⟩Γ(i, j, t)|i⟩⟨j| (4.49)

Deriving (4.46) from (4.47) is not very involved. One need only utilize the eigenvectors of
X̂ in order to rewrite the density operator ρ̂S0 on the left-hand side of (4.46). The trace-
preserving quantum map Λ is a composition of two trace-preserving quantum Ut and Et: a
unitary map acting on S and the environmental degrees of freedom that were not traced
out and a non-unitary map acting locally in S. Recall that we have already seen such a
technique in Lemma 1.6.1 for the case where X̂ was a position operator and H = L2

(
R
)
.

4.4 Monitoring the Process of System Information Broad-
casting

In [41], a SBS state associated with (4.40) is defined for every value of t > 0; the goal
therein was to show that (4.40) converges to an associated SBS state as t goes to ∞. The
associated SBS state of (4.40) at time t is defined as follows. We first restrict the sum of
(4.40) to the diagonal terms—the terms with i = j. We will label the resulting operator as
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follows.
ρ̂dg,t =

dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

ρ̂E
k
t

xi
(4.50)

The next step is to choose for every t a PVM acting on the space S
(
HS ⊗ ⊗NE

k=1 HEk

)
(

Note that for the case considered in [41], dim(HS) = dS < ∞ and dim(HEk) = dEk <
∞ for all k). To define such a PVM, the authors use the eigenbasis of the operator X̂:
the elements of the PVM are of the form

∣∣∣i〉〈i∣∣∣ ⊗ ⊗NE
k=1 P̂Ek

t
j where the

{∣∣∣i〉〈i∣∣∣}dS

i=1
and{

P̂Ek
t

j

}dS

j=1
∪
{
I−∑dS

i=1 P̂Ek
t

i

}
resolve the identity operators in B

(
HS

)
and B

(
HEk

)
respectively,

so that, in particular,
{
P̂Ek

t
j

}dS

j=1
∪
{
I−∑dS

i=1 P̂Ek
t

i

}
is a PVM in the kth environment’s Hilbert

space. The latter PVMs are then used to approximate the operator (4.40) by an SBS state:

ρ̂SBS,t := 1
N (t)

dS∑
j=1

∣∣∣j〉〈j∣∣∣⊗ NE⊗
k=1

P
Ek

t
j

ρ̂diag,t

∣∣∣j〉〈j∣∣∣⊗ NE⊗
k=1

P̂Ek
t

j

 = (4.51)

dS∑
i=1

σ̃i|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

. (4.52)

Here N (t) is a normalizing constant and σ̃i := σi

N (t) . With a bit of thought, one can verify
that the operator (4.52) is indeed an SBS state as defined in Definition 4.1.2. If (4.40)
converges to an object with the form (4.52) as t → ∞, we say that (4.40) is asymptotically
SBS. Convergence is meant here in the sense of trace distance. Namely, one would like to
show that

1
2 min
PVM

∥∥∥ρ̂t − ρ̂SBS,t
∥∥∥

1
→ 0 as t → ∞ (4.53)

where for each t the minimization is taken over all projective-valued-measures
{
P̂Ek

t
i }dS

i=1 ∪

{I−∑dS
i=1 P̂Ek

t
i }. Utilizing the fact that 1

2 minPOVM
∥∥∥ρ̂t− ρ̂SBS,t

∥∥∥
1

≤ 1
2 minPVM

∥∥∥ρ̂t− ρ̂SBS,t
∥∥∥

1
we may conclude that (4.53) implies that 1

2 minPOVM
∥∥∥ρ̂t − ρ̂SBS,t

∥∥∥
1

→ 0 as t → ∞ as well.
An attempt is made in [41] to prove (4.53) for he current setting but the argument provided
there is incomplete. In what follows we discuss the bounds presented in [41], as well as
propose and prove an alternative bound for the trace distance in (4.53).

In [41], a bound is conjectured for the trace distance in (4.53). In the case where ME

environmental degrees of freedom have been traced out and NE remain, the bound looks as
follows.

1
2 min
PVM

∥∥∥ρ̂t − ρ̂SBS,t
∥∥∥

1
≤ Γ(t) +

∑
i

∑
j;j ̸=i

√
σiσj

NE∑
k=1

F
(
ρ̂E

k
t

xi
, ρ̂E

k
t

xj

)
(4.54)

where now, Γ(t) := ∑
i

∑
j;j ̸=i |σi,j|

∏N
k=NE+1 |γki,j(t)|, and again γki,j(t) = Tr

[
ρ̂E

k
t

xi,xj

]
, σi,j :=

⟨i|ρ̂S0|j⟩ . If true, this result would allow us to estimate the minimum on the LHS, using the
asymptotic properties of Γ(t) and the fidelity terms in (4.54). This estimate would further
give us a way to estimate 1

2 minPOVM
∥∥∥ρ̂t − ρ̂SBS,t

∥∥∥
1
. As (4.54) is currently not known to be
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true, we will not be using it. Instead, we will be utilizing the bound proven in the previous
section which constitutes Theorem 4.2.2. For the interested reader, we include a discussion
pointing out the gap in the proof of the main theorem of [41] in appendix B.

4.4.1 A New Bound for the Trace Distance of a Multipartite State
and an Approximating SBS state

In what follows we use an unnormalized version of (4.51): ρ̂PSBS,t := N ρ̂SBS,t. This state
is just (4.51) without the normalization factor 1

N
. In practice it is easier to bound

∥∥∥ρ̂t −
ρ̂PSBS,t

∥∥∥
1

and then utilize Lemma 4.4.1, stated below, to bound
∥∥∥ρ̂t − ρ̂SBS,t

∥∥∥
1
.

Lemma 4.4.1 (Trace Distance Lemma)∥∥∥ρ̂ − ησ̂
∥∥∥

1
≤ L implies

∥∥∥ρ̂ − σ̂
∥∥∥

1
≤ 2L for constants L ≥ 0 and η ∈ [0, 1]

Proof. Using reverse triangle inequality we see that

L ≥ ∥ρ̂ − ησ̂∥1 ≥
∣∣∣∥ρ̂∥1 − ∥ησ̂∥1

∣∣∣ = ∥ρ̂∥1 − ∥ησ̂∥1 = 1 − η (4.55)

furthermore

∥ρ̂ − σ̂∥1 = ∥ρ̂ − ησ̂ + ησ̂ − σ̂∥1 ≤ ∥ρ̂ − ησ̂∥1 + ∥ησ̂ − σ̂∥1 ≤ (4.56)

L+ (1 − η)∥σ̂∥1 = L+ (1 − η) ≤ L+ L = 2L (4.57)

We now prove a preliminary inequality.∥∥∥ρ̂t − ρ̂PSBS,t
∥∥∥

1
= (4.58)

∥∥∥∥∥
dS∑
i,j=1

σi,jΓ(i, j, t)|i⟩⟨j| ⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj
−

dS∑
i=1

σi|i⟩⟨i| ⊗
NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

≤ (4.59)

∥∥∥∥∥
dS∑
i=1

σi|i⟩⟨i|⊗
NE⊗
k=1

ρ̂E
k
t

xi
−

dS∑
i=1

σi|i⟩⟨i|⊗
NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1
+
∥∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j|⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj

∥∥∥∥∥
k

≤

(4.60)
dS∑
i=1

∥∥∥∥∥σi|i⟩⟨i|⊗
NE⊗
k=1

ρ̂E
k
t

xi
−σi|i⟩⟨i|⊗

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1
+
∥∥∥∥∥∑

i

dS∑
j;j ̸=i

σi,jΓ(i, j, t)|i⟩⟨j|⊗
NE⊗
k=1

ρ̂E
k
t

xi,xj

∥∥∥∥∥
1

≤

(4.61)
dS∑
i=1

σi

∥∥∥∥∥|i⟩⟨i| ⊗
(

NE⊗
k=1

ρ̂E
k
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

)∥∥∥∥∥
1

+
∑
i

dS∑
j;j ̸=i

∣∣∣σi,jΓ(i, j, t)
∣∣∣∥∥∥∥∥|i⟩⟨j| ⊗

NE⊗
k=1

ρ̂E
k
t

xi,xj

∥∥∥∥∥
1

=

(4.62)
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dS∑
i=1

σi

∥∥∥∥∥
NE⊗
k=1

ρ̂E
k
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

+
∑
i

dS∑
j;j ̸=i

∣∣∣σi,jΓ(i, j, t)
∣∣∣ ≤ (4.63)

NE∑
k=1

dS∑
i=1

σi

∥∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

+
∑
i

dS∑
j;j ̸=i

∣∣∣σi,jΓ(i, j, t)
∣∣∣ (4.64)

Where in the last step we have used Lemma 4.1. Now, using Lemma 4.4.1 we conclude that

1
2 min
PVM

∥∥∥ρ̂t − ρ̂SBS,t
∥∥∥

1
≤ min

PVM

(
NE∑
k=1

dS∑
i=1

σi

∥∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂E1

t
i

∥∥∥∥∥
1

)
+ Γ(t) (4.65)

Recalling that Γ(t) := ∑
i

∑
j;j ̸=i |σi,j|

∏N
k=NE+1 |γki,j(t)|, γki,j(t) = Tr

[
ρ̂E

k
t

xi,xj

]
, and σi,j :=

⟨i|ρ̂S0|j⟩. Γ(t) (4.65) is the decoherence term which is independent of the choice of the
PVM minimized over. The decoherence term is simple to study provided that we are able to
compute the trace defining the terms γki,j(t). The first term in (4.65) involves a minimization
over all PVM for each value of t. Rather than attempting to solve the minimization problem
exactly, we shall be employing Theorem 4.2.2 to bound (4.65).

In order to apply Theorem 4.2.2 to estimate the first term in (4.65) we must assume that
the initial states ρ̂E

k
0 are pure, we will consider the case where these are not pure in Section

4.7. The purity of ρ̂E
k
0 furthermore implies that the operators ρ̂

Ek
t

i are pure for all i since
the evolution (4.42) is unitary. We will henceforth write ρ̂E

k
0 as a projector.∣∣∣ψki,t〉〈ψki,t∣∣∣ = ρ̂

Ek
t

i (4.66)

We now use Theorem 4.2.2 to estimate the first summand of (4.65), therefore leading the
following theorem.
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Theorem 4.4.1 (Estimating Proximity to SBS)

Using the definitions found in this section so far.

1
2 min
POVM

∥∥∥ρ̂t − ρ̂SBS,t
∥∥∥

1
≤ 1

2

NE∑
k=1

dS∑
i=2

σi
i−1∑
s=1

∣∣∣∣∣ Mk
s,i

Dk
s−1,tD

k
s,t

∣∣∣∣∣+ Γ(t) (4.67)

where

Mk
s,i := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψk1,t

∣∣∣ψk1,t〉 〈
ψk1,t

∣∣∣ψk2,t〉 . . .
〈
ψk1,t

∣∣∣ψks,t〉〈
ψk2,t

∣∣∣ψk1,t〉 〈
ψk2,t

∣∣∣ψk2,t〉 . . .
〈
ψk2,t

∣∣∣ψks,t〉
... ... . . . ...〈

ψks−1,t

∣∣∣ψk1,t〉 〈
ψks−1,t

∣∣∣ψk2,t〉 . . .
〈
ψks−1,t

∣∣∣ψks,t〉〈
ψki,t

∣∣∣ψk1,t〉 〈
ψki,t

∣∣∣ψk2,t〉 . . .
〈
ψki,t

∣∣∣ψks,t〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.68)

Dk
s,t :=

∣∣∣∣∣∣∣∣∣∣∣∣

〈
ψk1,t

∣∣∣ψk1,t〉 〈
ψk1,t

∣∣∣ψk2,t〉 . . .
〈
ψk1,t

∣∣∣ψks,t〉〈
ψk2,t

∣∣∣ψk1,t〉 〈
ψk2,t

∣∣∣ψk2,t〉 . . .
〈
ψk2,t

∣∣∣ψks,t〉
... ... . . . ...〈

ψkj,t
∣∣∣ψk1,t〉 〈

ψkj,t
∣∣∣ψk2,t〉 . . .

〈
ψks,t

∣∣∣ψks,t〉

∣∣∣∣∣∣∣∣∣∣∣∣
(4.69)

Given that computing determinants is a difficult task, one might wonder if there is a
way to avoid doing so via further bounding the term (4.67) with another term that does
not involve determinants. It turns out that such an approach is possible and if the entries〈
ψks,t

∣∣∣ψkl,t〉 are small enough, the process is even easier to handle. We will develop such an ap-
proach in Section 4.5 of this chapter. The bound (4.67) may be used to dynamically monitor
the convergence of some multipartite quantum state undergoing non-unitary evolution to an
SBS state. Regardless of whether (4.54) is viable or not; the bound (4.67) gives us a way to
monitor convergence to SBS in a way that is independent of the optimization problem over
all PVMS and/or POVMS.

It is with Theorem 4.4.1 that we hope to mitigate the gap in [41]. Although Corollary 1
of [41] is not substantiated by a correct proof at the moment, we present Theorem 4.4.1 as
a viable alternative to Corollary 1 of [41]. If fate should have it that Corollary 1 is shown to
be fundamentally untrue, then Theorem 4.4.1 would be the only tool for us to choose from
( i.e. to the extent of the author’s knowledge).

4.5 Further bounds for Theorem 4.2.2
As mentioned in the previous section, taking determinants is in general computationally

costly. If one could find an estimate that allowed us to avoid computing the determinants
of Theorem 4.4.1 this would be of great utility. We are typically interested in asymptotic
behavior; in particular, we are studying cases where the minimization terms of Theorem
4.4.1 are expected to become small with respect to the relevant time scale of the dynamics
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in question (usually the decoherence time-scale is used). So long as we find a bound that
shows the same asymptotic dynamics as the upper bound of Theorem 4.4.1, such a bound
may also allow us to estimate the smallness of the minimization terms in (Theorem 4.4.1) as
t gets large with respect to the relevant time scale. To begin our search for such an estimate
we introduce three results that we shall be using.

Theorem 4.5.1 (Hadamard’s inequality for determinants [16])

Let Â be some arbitrary N ×N matrix with entries Ai,j. Then

det
(
Â
)

≤
N∏
j=1

(
N∑
i=1

|Aij|2
) 1

2

.

Theorem 4.5.2

[16] Let I+ B̂ be an N ×N matrix with entries δij +Bij where Bi,i = 0 for all i. Then

det(I + B̂) =
N∏
j=1

(
1 + λj

(
B̂
))

Theorem 4.5.3 (Gerschgorin Theorem [55])

Let Â be an arbitrary N ×N matrix with matrix elements Ai,j. Now, define

Di :=
{
z ∈ C : |z − Aii| ≤

∑
j;j ̸=i

|Aij|
}
.

Then, all of the eigenvalues of the operator Â are found in the set GN := ⋃N
i=1 Di. The

sets Di are known as Gerschgorin discs.

We now use these theorems to prove the following. Using the notational conventions of
the previous section,
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Theorem 4.5.4

min
PVM

dS∑
i=1

σi

∥∥∥∥∥ρ̂Ek
t

xi
− PEk

t
i ρ̂E

k
t

xi
PEk

t
i

∥∥∥∥∥
1

≤ (4.70)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i ̸=j

σi|⟨ψki,t|ψkj,t⟩|

minx∈GdS

∣∣∣1 − |x|
∣∣∣i−1 (4.71)

where
Gs :=

s⋃
i=1

Ds
i (4.72)

Ds
i :=

{
x ∈ R : |x| ≤

∑
j;j ̸=i

|Bs
ij,t|
}
i ∈ {1, ..., k} (4.73)

MdS
(t) := max

n̸=m;{1,...,dS}
|⟨ψki,t|ψkj,t⟩| (4.74)

and

B̂s
t :=


0 ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩

⟨ψk2,t|ψk1,t⟩ 0 . . . ⟨ψk2,t|ψks,t⟩
... ... . . . ...

⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . 0

 (4.75)

Proof. Assume that s > 2. Then, using Theorem 4.5.1

Â :=
∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ψk1,t|ψk1,t⟩ ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩
⟨ψk2,t|ψk1,t⟩ ⟨ψk2,t|ψk2,t⟩ . . . ⟨ψk2,t|ψks,t⟩

... ... . . . ...
⟨ψks−1,t|ψk1,t⟩ ⟨ψks−1,t|ψk2,t⟩ . . . ⟨ψks−1,t|ψks,t⟩
⟨ψki,t|ψk1,t⟩ ⟨ψki,t|ψk2,t⟩ . . . ⟨ψki,t|ψks,t⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣ ≤ (4.76)

s∏
n=1

(
s∑

m=1
|An,m|2

) 1
2

(4.77)

Where
Anm = ⟨ψkn,t|ψkm,t⟩ for n ∈ {1, ..., k − 1} m ∈ {1, ..., k} (4.78)

and
Anm = ⟨ψki,t|ψkm,t⟩ for n = k m ∈ {1, ..., k}. (4.79)

Therefore,

s∏
n=1

(
s∑

m=1
|Anm|2

) 1
2

=
s−1∏
n=1

(
s∑

m=1
|⟨ψkn,t|ψkm,t⟩|2

) 1
2
(

s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.80)

(
max

n∈{1,...,s−1}

s∑
m=1

|⟨ψkn,t|ψkm,t⟩|2
) s−1

2
(

s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

(4.81)
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(
1 + max

n∈{1,...,s−1}

s∑
m=1;m ̸=n

|⟨ψkn,t|ψkm,t⟩|2
) s−1

2
(

s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.82)

(
1 + max

n∈{1,...,dS−1}

dS∑
m=1;m ̸=n

|⟨ψkn,t|ψkm,t⟩|2
) dS−1

2
(

s∑
m=1

|⟨ψki,t|ψkm,t⟩|2
) 1

2

≤ (4.83)

(
1 + dS max

n ̸=m;{1,...,dS}
|⟨ψkn,t|ψkm,t⟩|

)dS−1( s∑
m=1

|⟨ψki,t|ψkm,t⟩|
)

(4.84)

Now, let us shift our attention to the terms Dk
s,t in Theorem 4.4.1.

Dk
s,t :=

∣∣∣∣∣∣∣∣∣∣
⟨ψk1,t|ψk1,t⟩ ⟨ψk1,t|ψk2,t⟩ . . . ⟨ψk1,t|ψks,t⟩
⟨ψk2,t|ψk1,t⟩ ⟨ψk2,t|ψk2,t⟩ . . . ⟨ψk2,t|ψks,t⟩

... ... . . . ...
⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . ⟨ψks,t|ψks,t⟩

∣∣∣∣∣∣∣∣∣∣
(4.85)

Using Theorem 4.5.2 we have that

|Dk
s,t| =

∣∣∣∣∣
s∏
j=1

(
1 + λj

(
B̂s
t

))∣∣∣∣∣ (4.86)

where again

B̂s
t :=


0 ⟨ψ1,t|ψ2,t⟩ . . . ⟨ψ1,t|ψs,t⟩

⟨ψk2,t|ψk1,t⟩ 0 . . . ⟨ψk2,t|ψks,t⟩
... ... . . . ...

⟨ψkj,t|ψk1,t⟩ ⟨ψkj,t|ψk2,t⟩ . . . 0

 (4.87)

Now, using Theorem 4.5.3 we know that the eigenvalues of B̂s
t lie within the Gerschgorin

discs
Ds
i :=

{
x ∈ C : |x| ≤

∑
j;j ̸=i

|Bs
ij,t|
}
i ∈ {1, ..., k} (4.88)

where we have made use of the fact that Bs
ii,0 = 0 for all i. The superscript of Ds

i is used to
highlight its pertinence to the determinant Dk

s,t. Now,

|Dk
s,t| =

∣∣∣∣∣
s∏
j=1

(
1 + λj

(
B̂s
t

))∣∣∣∣∣ =
s∏
j=1

∣∣∣1 + λj
(
B̂s
t

)∣∣∣ ≥ (4.89)

≥
s∏
j=1

min
x∈Gs

∣∣∣1 + x
∣∣∣ = min

x∈Gs

∣∣∣1 + x
∣∣∣s. (4.90)

Here we remind the reader that Gs := ⋃s
i=1 Ds

i . Minimizing over a larger set yields a smaller
minimum, hence,

min
x∈Gs

∣∣∣1 + x
∣∣∣s ≥ min

x∈GdS

∣∣∣1 + x
∣∣∣s ≥ min

x∈GdS

∣∣∣1 − |x|
∣∣∣k. (4.91)

Using (4.84) and (4.91), we may now further bound the determinant-including terms in result
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(4.67) to obtain

min
PVM

dS∑
i=1

σi

∥∥∥∥∥ρ̂Ek
t

i − P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

≤ (4.92)

dS∑
i=2

σi
i−1∑
s=1

(
1 + dSMds(t)

)dS−1(∑s
m=1 |⟨ψki,t|ψkm,t⟩|

)
minx∈GdS

∣∣∣1 − |x|
∣∣∣s = (4.93)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
s=1

s∑
m=1

|⟨ψki,t|ψkm,t⟩|
minx∈GdS

∣∣∣1 − |x|
∣∣∣s ≤ (4.94)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
s=1

i−1∑
m=1

|⟨ψki,t|ψkm,t⟩|

minx∈GdS

∣∣∣1 − |x|
∣∣∣i−1 ≤ (4.95)

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi(i− 1)

i−1∑
m=1

|⟨ψki,t|ψkm,t⟩|

minx∈GdS

∣∣∣1 − |x|
∣∣∣i−1 ≤ (4.96)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i=2
σi

i−1∑
m=1

|⟨ψki,t|ψkm,t⟩|

minx∈GdS

∣∣∣1 − |x|
∣∣∣i−1 ≤ (4.97)

dS

(
1 + dSMdS

(t)
)dS−1 dS∑

i

dS∑
j;j ̸=i

σi|⟨ψki,t|ψkj,t⟩|

minx∈GdS

∣∣∣1 − |x|
∣∣∣i−1 (4.98)

We follow up Theorem 4.5.4 with the following corollary.

Corollary 4.5.1 (Bound for small dSMdS
(t))

Assume that dSMdS
(t) < 1, then

min
PVM

dS∑
i=1

σi

∥∥∥∥∥ρ̂Ek
t

i − P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

≤ (4.99)

dS

(
1 + dSMdS

(t)
)dS−1

(
1 − dSMdS

(t)
)dS−1

dS∑
i=1

dS∑
j;j ̸=i

σi|⟨ψki,t|ψkj,t⟩| (4.100)

Corollary 4.5.1 and Theorem 4.5.4 give us a non-computationally heavy way of estimating
the bound of Theorem 4.4.1.
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4.6 Case where Dk
s,t are determinants of circulant ma-

trices.
Before moving on to the more general case where the density operators ρ̂

Ek
t

i are taken to
be mixtures, we will consider a special case where the bound of Theorem 4.4.1 may take a
simpler form. i.e. let us return to the determinant term in (4.69), this time however we will
assume that ⟨ψki,t|ψkj,t⟩ is characterized by a function of t|i− j|. i.e. fk(t|i− j|) := ⟨ψki,t|ψkj,t⟩.
Using this, we rewrite Dk

s,t from (4.69) as follows.

Dk
s,t :=

∣∣∣∣∣∣∣∣∣∣
fk(0) fk(t) . . . fk(t(s− 1))
fk(t) fk(0) . . . fk(t(s− 2))

... ... . . . ...
f(t(j − 1)) f(t(j − 2)) . . . f(0)

∣∣∣∣∣∣∣∣∣∣
(4.101)

(4.101) is a determinant of a circulant matrix and such determinants may be calculated
exactly with ease [61]. Namely,

Dk
s,t =

s−1∏
m=0

s−1∑
n=0

fk(tn)emn2πi
s . (4.102)

4.7 Mixed Environmental States
Recall that we named the sums over i in (4.65) the SQSD problem for the mixture∑i σiρ̂

Ek
t

xi
.

We remind the reader that we call it Super Quantum State Discrimination (SQSD) because
(4.65) bounds the respective QSD error pE

{
pi, ρ̂E

k
t

xi
, P̂Ek

t
i

}
as follows.

pE

{
pi, ρ̂E

k
t

xi
, P̂Ek

t
i

}
=

dS∑
i=1

σiTr

{
ρ̂E

1
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

}
≤

dS∑
i=1

σi

∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

(4.103)

where we have used the fact that
∣∣∣Tr{Â

}∣∣∣ ≤
∥∥∥Â∥∥∥

1
.

The theory we have developed so far considers only the case where ρ̂E
k
t

xi
are pure states

for all i and k. In this section, we will further develop the previous section by providing the
analog to Theorem 4.2.2 for the case where the environmental degrees of freedom are finite
mixtures of pure states. Using a simpler indexing scheme, consider a mixed state of the form∑N
i=1 piρ̂i, where ∑N

i=1 pi = 1 and the ρ̂i are all countably-mixed states; i.e. ρ̂i = ∑Mi
k=1 ηikρ̂ik

where all of the ρ̂ik are pure states and ∑Mi
k=1 ηik = 1. Let us now consider the QSD problem

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
. (4.104)

The latter item is bounded above by the minimization problem that we have been concerned
with in the previous section, i.e. minimizing over all PVM as opposed to minimizing over
all POVM in (4.104). In turn, it is also bounded above by the super PVM quantum state
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discrimination error as seen in the following relationship.

min
POVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ min

PVM

N∑
i=1

piTr
{

ρ̂i − M̂iρ̂iM̂
†
i

}
≤ (4.105)

min
PVM

N∑
i=1

pi

∥∥∥∥ρ̂i − M̂iρ̂iM̂
†
i

∥∥∥∥
1

(4.106)

As mentioned before, the latter follows from the fact that all PVMs are POVMs, making
the space over which the objective function is minimized smaller and therefore yielding a
smaller minimum.

Using the bound of Theorem 3.2.2 we will bound (4.105) and (4.106) from below. Namely,

1
2

N∑
i=1

N∑
j;j ̸=i

pipjF (ρ̂i, ρ̂j) ≤ min
PVM

N∑
i=1

pi

∥∥∥∥ρ̂i − P̂iρ̂i=1P̂i

∥∥∥∥
1

(4.107)

Expanding the ρ̂i we see that

F (ρ̂i, ρ̂j) = F
( Mi∑
k=1

ηikρ̂ik,
Mj∑
k=1

ηjkρ̂jk

)
≥

min{Mi,Mj}∑
k=1

√
ηikηjkF

(
ρ̂ik, ρ̂jk

)
(4.108)

where we have used the joint concavity of the fidelity [9] in the last line of (4.108). (4.107)
now implies that

1
2

N∑
i=1

N∑
j;j ̸=i

min{Mi,Mj}∑
k=1

pipj
√
ηikηjkF

(
ρ̂ik, ρ̂jk

)
≤ min

PVM

N∑
i=1

pi

∥∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥∥
1

(4.109)

This inequality shows that a necessary and sufficient condition for fully solving the SQSD
optimization problem, i.e. for obtaining minPVM

∑N
i=1 pi

∥∥∥∥ρ̂i−P̂iρ̂iP̂i

∥∥∥∥
1

= 0, is that ρ̂ik ⊥ ρ̂jk

for all i, j, k where i ̸= j. Otherwise, we run into the possibility of the SQSD being bounded
away from zero by a significant amount. For the case where the ρ̂i are not mixed states the
respective relationship is ρ̂i ⊥ ρ̂j for i ̸= j, which is what we expect from our analysis in the
previous section. For the case where the ρ̂i are finite mixtures of pure states it is perhaps
not surprising that one will be required to analyze the fidelities between elements of any two
different mixtures, say ρ̂i and ρ̂j, in order to determine the discriminability of the mixture∑N
i=1 ρ̂i. As informative as (4.109) is, we have yet to learn anything about the necessary

constraints for the fidelities involving multiple elements of the same mixture ρ̂i, take ρ̂ik and
ρ̂il for example. It could be the case that, in principle, there need not be any restrictions
on said fidelities in order to successfully achieve minPVM

∑N
i=1 pi

∥∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥∥
1

= 0; at the
moment, however, the latter is unknown to the author.

We will now be bounding (4.109) from above. To do this, we will once again take a
constructive approach. Our approach shall be an adaptation of the methods employed in
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the proof of Theorem 4.2.2 and Lemma 4.2.1. Constraining ourselves to the case where P̂i

are projectors will yield a bound that will be useful for the cases where ρ̂ik ⊥ ρ̂jk for all k
when i ̸= j and ρ̂ik ⊥ ρ̂il for all i when l ̸= k hold exactly and/or approximately.

Let us now construct a PVM that attempts to solve the SQSD problem on the right-hand
side of inequality (4.107). We begin by noting that

min
PVM

N∑
i=1

pi

∥∥∥∥ρ̂i − P̂iρ̂iP̂i

∥∥∥∥
1

≤ min
PVM

N∑
i=1

Mi∑
k=1

piηik

∥∥∥∥ρ̂ik − P̂iρ̂ikP̂i

∥∥∥∥
1

(4.110)

This looks very similar to the PVM QSD problem for pure states we tackled in the previous
two sections (note that piηik is a probability distribution) with the exception that now each
element of the PVM

{
P̂i

}
i
corresponds to all elements ρ̂ik of the ith element of the kth mix-

ture. Following the methods from the previous section, one might suggest implementing the
gram-schmidt procedure once more in order to obtain an orthonormal set of vectors

∣∣∣ϕi〉,
one for each i. However, in this case, the operators ρ̂i are mixed and therefore do not have a
representation as a vector in the corresponding Hilbert space; being able to view the mixture∑
i piρ̂i as a single index ensemble of pure states was one of the key assumptions that lead to

Theorem 4.2.2. Perhaps there is a way to implement the Gram-Schmidt process with the end
of producing an analog to Theorem 4.2.2 in greater generality by using the Hilbert-Schmidt
inner product; in particular for the case where all of the ρ̂i are mixtures. Unfortunately, the
author is unaware of any such approaches that have been met with success as of yet.

We now impose the following structural assumption on the P̂i .

P̂i =
Mi∑
k=1

P̂ik (4.111)

Now, in order to guarantee that a sum such as ∑M
k=1 P̂ik is a projector, we will need to

assume that the P̂ik are all projectors with non-overlapping support.

Proof.

P̂2
i =

( Mi∑
k=1

P̂ik

)2
=

Mi∑
k=1

Mi∑
p=1

P̂ikP̂ip =
Mi∑
k=1

Mi∑
p=1

P̂ikP̂ipδkp =
Mi∑
k=1

P̂ik = P̂i (4.112)

Since all of the ρ̂ik are pure states, we may apply the Gram-schmidt process in order
to construct a PVM

{
P̂ik

}
ik

. The resulting PVM elements P̂ik, with the inclusion of the
completion element I−∑

i

∑
k P̂ik, form a PVM that resolves the identity. There are N ×M

states ρ̂ik since the index i ranges from 1 to N and the index k from 1 to M . Let us now
visualize the set of these operators ρ̂ik as a vector as follows.

V⃗ :=
(
ρ̂11 . . . ρ̂1M1 ρ̂21 . . . ρ̂2M2 . . . ρ̂N1 . . . . . . ρ̂NMN

)
. (4.113)
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Let us now do a relabeling and name the sth component of this vector Vs :=
∣∣∣ξs〉〈ξs∣∣∣.

Given a specific value s ∈ {1, 2, ...,∑N
i=1 Mi} we can use the following formula to obtain the

corresponding ρ̂ik. ∣∣∣ξs〉〈ξs∣∣∣ = ρ̂f(s),g(s) (4.114)

where f(x) = ⌈ x
M

⌉ and g(x) = xmodM . Assuming that the
∣∣∣ξs〉〈ξs∣∣∣ form a linearly inde-

pendent set we now apply the Gram-Schmidt process to obtain the family of orthonormal
states ∣∣∣ϕ1

〉
:=
∣∣∣ξ1
〉

(4.115)
∣∣∣ϕs〉 = 1

αs

{∣∣∣ξs〉−
s−1∑
k=1

〈
ϕk
∣∣∣ξs〉∣∣∣ϕk〉

}
, s ∈ {1, 2, ..., N ×M} (4.116)

where as before αi :=
∥∥∥∣∣∣ξi〉−∑i−1

k=1

〈
ϕk
∣∣∣ξi〉∣∣∣ϕk〉∥∥∥ =

√
1 −∑i−1

k=1 |
〈
ϕk
∣∣∣ξi〉|2 for i > 1 and α1 = 1

are the respective normalization constants. An identity resolving PVM
{∣∣∣ξs〉〈ξs∣∣∣}

s

⋃{I −∑
s

∣∣∣ξs〉〈ξs∣∣∣} has thus been constructed, defining ωs := pf(s)ηg(s) we may now rewrite and
bound

N∑
i=1

Mi∑
k=1

piηik

∥∥∥∥ρ̂ik − Piρ̂ikPi

∥∥∥∥
1

(4.117)

as follows.

∑
s

ωs

∥∥∥∥∥∣∣∣ξs〉〈ξs∣∣∣−
( f(s)+Mf(s)∑

l=f(s)

∣∣∣ϕl〉〈ϕl∣∣∣)∣∣∣ξs〉〈ξs∣∣∣( f(s)+Mf(s)∑
l=f(s)

∣∣∣ϕl〉〈ϕl∣∣∣)
∥∥∥∥∥

1
= (4.118)

∑
s

ωs

∥∥∥∥∥∥
∣∣∣ξs〉〈ξs∣∣∣−∣∣∣ϕs〉〈ϕs∣∣∣ξs〉〈ξs∣∣∣ϕs〉〈ϕs∣∣∣−( f(s)+Mf(s)∑

l=f(s);l ̸=s

∣∣∣ϕl〉〈ϕl∣∣∣)∣∣∣ξs〉〈ξs∣∣∣( f(s)+Mf(s)∑
l=f(s);l ̸=s

∣∣∣ϕl〉〈ϕl∣∣∣)
∥∥∥∥∥∥

1

≤

(4.119)∑
s

ωs

∥∥∥∥∣∣∣ξs〉〈ξs∣∣∣−∣∣∣ϕs〉〈ϕs∣∣∣ξs〉〈ξs∣∣∣ϕs〉〈ϕs∣∣∣∥∥∥∥
1
+
∑
s

ωs

∥∥∥∥∥∥
( f(s)+Mf(s)∑

l=f(s);l ̸=s

∣∣∣ϕl〉〈ϕl∣∣∣)∣∣∣ξs〉〈ξs∣∣∣( f(s)+Mf(s)∑
l=f(s);l ̸=s

∣∣∣ϕl〉〈ϕl∣∣∣)
∥∥∥∥∥∥

1

≤

(4.120)∑
s

ωs2
s−1∑
k=1

|
〈
ϕk
∣∣∣ξs〉| +

∑
s

ωs

f(s)+Mf(s)∑
l=f(s)⌉;l ̸=s

f(s)+Mf(s)∑
k=f(s);k ̸=s

∥∥∥∥∣∣∣ϕl〉〈ϕl∣∣∣ξs〉〈ξs∣∣∣ϕk〉〈ϕk∣∣∣∥∥∥∥
1

= (4.121)

∑
s

ωs2
s−1∑
k=1

|
〈
ϕk
∣∣∣ξs〉| +

∑
s

ωs

f(s)+Mf(s)∑
l=f(s);l ̸=s

f(s)+Mf(s)∑
k=f(s);k ̸=s

|
〈
ϕl
∣∣∣ξs〉〈ξs∣∣∣ϕk〉| (4.122)

where we have used Lemma 4.2.1 in going from (4.120) to (4.121). Using Lemma 4.2.2 we
may explicitly write the terms |

〈
ϕl
∣∣∣ξs〉| as Gram-Schmidt determinants and use these to

estimate the efficacy of the PVM built from (4.115).
In this work, mixed environmental states as the states of the environmental degrees of free-
dom are not the central focus. We shall therefore forego further analysis of the bound (4.122)
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at the moment and leave this for future work. However, we will point out that (4.122) may
be further bounded by the following term.

(4.122) ≤ 3
∑
s

ωs
∑
l;l ̸=s

|
〈
ϕl
∣∣∣ξs〉| (4.123)

where the only restriction on the sums is that l ̸= s. As already mentioned, this may be
better estimated using Lemma 4.2.2.

As a final remark, we point out that a more general mixture of non-pure states ∑i piρ̂i
may be obtained by considering the case where ρi := Ei

(
ρ̂0

)
(ρ̂0 is a pure state); Ei being

arbitrary quantum maps for all i. In general the ρi := Ei
(
ρ̂0
)

will not be expressable as
finite mixtures. If such a case is encountered we may use (4.122) only if the ρi := Ei

(
ρ̂0
)

may be approximated by countable mixtures. In Chapter 5 we will study a case where a
mixture of the type ∑i piEi

(
ρ̂0

)
is encountered. However, for some of the cases to be studied

in Chapter 5, the Ei will be approximately unitary maps and so we use this to approximate∑
i piEi

(
ρ̂0

)
with a countable mixture of pure states. More general cases are still open to

further investigation.

4.8 How general may the B̂k be?
We conclude this subsection with the following corollary. The question it sheds light on is the
following: "How general may B̂ whilst still inducing dynamics (4.46) which are convergent
to and SBS state?"

Theorem 4.8.1 (Sufficient conditions for the convergence to SBS for
a broad family of multipartite states)

Consider the setup spanning equations (4.38) through (4.46). If for all k, B̂k has
a non-empty Rajchman subspace HEk,rc (3.5.1), and ρ̂E

k
0 is a finite mixture of pure

states in S(HEk,rc), then ρ̂ converges asymptotically in t > 0 to an SBS state with
respect to the trace norm topology.

Proof. From the discussion in the previous section, which uses the techniques of Theorems

4.2.2 and 4.4.1, we see that the decay of the term ∑NE
k=1

∑dS
i=1 σi

∥∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

may be

estimated via inner products of non-equal pure states, i.e.
∣∣∣〈ϕl∣∣∣ξs〉∣∣∣ (4.123) which upon in-

specting its associated Gram-Determinants (see (4.34 )) one should notice that the rightmost
column has solely inner products of unequal pure states (see Theorem (4.5.4)). Furthermore,
the term Γ(i, j, t) (4.45) is a product of inner products of non-equal pure states. The inner

products emanating from both the diagonal terms ∑NE
k=1

∑dS
i=1 σi

∥∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥∥
1

and

the off-diagonal terms ∑i

∑dS
j;j ̸=i

∣∣∣σi,jΓ(i, j, t)
∣∣∣ are structurally of the form

〈
ψ
∣∣∣e−itB̂k

∣∣∣ϕ〉 with
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∣∣∣ψ〉 ∈ HEk,rc and so by Lemma 3.5.1 we have our result.



Chapter 5

SBS for Continuous Variables.

In this Chapter, we will generalize the concept of SBS to the case where the operator X̂
is a position operator acting in HS = L2

(
R
)
. Whilst studying SBS theory in such a case,

we shall be interested in the decoherence of superpositions of the general eigenstates of X̂.
i.e. Let ρ̂S0 be state in S

(
L2
(
R
))

, we will be keen on studying the behaviour of
〈
x′
∣∣∣Et(ρ̂S)∣∣∣x〉 (5.1)

as t becomes large within a specified time frame of interest, where Et is a quantum map that
produces decoherence effects [12]. Notice the continuous nature of the coherence terms 5.1,
i.e. for any x, x′ ∈ R 5.1 is a coherence term vs the analogous case studied in the previous
chapter, i.e. (4.49), where there was a countable amount of coherence terms. We henceforth
will be referring to the case where X̂ has purely continuous spectrum as the SBS theory for
continuous variables (SBSCV).

Let us assume the quantum-measurement limit, hypothesis discussed in Subsection 1.6.3
with dim

(
HS

)
= ∞ and dim

(
HEk

)
= ∞ for all k. i.e.

Ĥtot ≈ Ĥint (5.2)

We will also assume an interaction Hamiltonian of the von Neumann type. Hence,

Ĥint = X̂ ⊗
N∑
k=1

gkB̂k (5.3)

We already mentioned that X̂ will be taken to be the position operator for now. The B̂k

will, in general, be taken to be self-adjoint operator with a non-empty Rajchman Subspace
(Theorem 3.5.1); each acting in its respective Hilbert space, i.e. all of the B̂k act on different
Hilbert spaces. An example of the latter, and one which we will explore in depth, is the
case where all of the B̂k are position or momentum operators. The time evolution operator
corresponding to (5.3) is the following.

Ût = e−itX̂⊗
∑N

k=1 gkB̂k . (5.4)

121
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Considering a product state as our initial state, as we did in (4.38), acting on the appropriate
product Hilbert space, we apply the time evolution operator (5.4).

ρ̂t =
(
e−itX̂⊗

∑N

k=1 gkB̂k

)(
ρ̂S0 ⊗

N⊗
k=1

ρ̂E
k
0

)(
eitX̂⊗

∑N

k=1 gkB̂k

)
. (5.5)

In order to study the state of the subsystem formed by the system S and the first
NE environments, we take the partial trace of the time-evolved density operator over the
remaining ME := N−NE environments. Using Lemma 1.6.1 and (1.130), the following state
is the result of partially tracing ME environments.

UNE ,t

EME
t

(
ρ̂S0

)
⊗

NE⊗
k=1

ρ̂E
k
0

 (5.6)

Where
Un,t

(
Â
)

:= e−itX̂⊗Ŝn

(
Â
)
eitX̂⊗Ŝn (5.7)

Ŝn :=
n∑
k=1

gkB̂k (5.8)

and
EME
t {σ̂} :=

∫ ∫
⟨x|σ̂|y⟩ΓME

(t, x, y)|x⟩⟨y|dxdy. (5.9)

where
ΓME

(t, x, y) :=
N∏

k=NE+1
Trk

{(
e−itxgkB̂k

)
ρ̂E

k
0
(
eitygkB̂k

)}
(5.10)

ME = N−NE, the number of traces being taken in equation (5.10). To simplify the notation,
we shall forgo all but two environments, i.e. N = 2, NE = ME = 1. Generalizing everything
to a general ME, NE and N will be. In such a case, after partial tracing over one of the
environments we obtain the following density operator.

ρ̂t := U1,t
(
E 1
t {ρ̂S0} ⊗ ρ̂E

1
0
)
. (5.11)

The map E 1
t is a decoherence quantum map and U1,t is a unitary map obtained from the

Hamiltonian (5.3) for the case N = 2. Again, all of the ensuing results may be easily gener-
alized to a general NE.

The primary divergence from the techniques presented in Chapter 4 will be the necessity
to partition the operator E 1

t {ρ̂S0}. For the case where X̂ is a position operator, the partitions
of interest are those of the following.

E 1
t {ρ̂S0

}
=
∑
i

∑
j

P̂∆i,t
E 1
t {ρ̂S0

}
P̂∆j,t

(5.12)

where the operators P̂∆i,t
with the property P̂∆i,t

X̂ = χ∆i,t

(
X̂
)

(χ∆i,t

(
x) are indicator

functions and the ∆i,t are subsets of the real line). In general, these projectors will be time-
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dependent, and the size of the ∆i,t will be restricted by quantum-metrological limitations
[15]. We will not explore the quantum-metrological aspects of SBSCV in this work; we sim-
ply highlight the fact that the size of the magnitudes of the ∆i,t may be bounded from below
and from above by parameters depending on quantum-metrological physical limitations. A
physical interpretation of the limiting smallness of the subspaces ∆i,t, may be deduced within
the context of von Neumann measurement theory (2.2.3). The set of P̂∆i,t

is a PVM and
therefore affords a von Neumann measurement scheme on the system S. With the latter in
mind, the size of the ∆i,t may be interpreted as resolution limits. Indeed, resolving the posi-
tion of some arbitrarily small particles would require larger amounts of energy as the size of
the particle becomes smaller. Due to the technological limitations of our monitoring appara-
tuses, there will always be a limit to the smallness of the resolution ∆i,t. When introducing
the approximate SBS state for the continuous variables (CV) case a specific PVM, acting
on the system S, will be assumed for every t prior to estimating the respective optimiza-
tion problem that ensues (see 5.19). It is there where the partition (5.12) will play a key role.

Assuming that we have an appropriate partition (5.12) we may now mirror our work from
the previous chapter in order to define an appropriate SBS for the CV case and furthermore
develop tools to study the convergence of (5.12) to such an SBS asymptotically in t. First,
we present a definition that generalizes Definition 4.1.2 to a definition that supports the CV
setting. Namely,
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Definition 5.0.1 (SBS, a more general definition)

Let HS ⊗ ⊗NE
k=1 HEk be some tensor product Hilbert space. HS will correspond to

the system while HE1 ,HE2 , ...,HENE will all correspond to environmental degrees of
freedom. A SBS state acting in S

(
HS ⊗ ⊗NE

k=1 HEk

)
is any density operator of the

form

ρ̂SBS :=
∑
i

P̂Si
⊗

NE⊗
k=1

IEk

ρ̂

P̂Si
⊗

NE⊗
k=1

IEk

 (5.13)

satisfying the following properties.

Property 1)

F
(
ρ̂E

k

i , ρ̂E
k

j

)
= 0 ∀ i ̸= j (5.14)

where
{
PSi

}
is a PVM acting in HS and

ρ̂E
k

i := TS

TEk
′ ̸=k


P̂Si

⊗
NE⊗
k=1

IEk

ρ̂

P̂Si
⊗

NE⊗
k=1

IEk


 (5.15)

(TrEk′ ̸=k means that we trace out over all environments with the exception of the kth
environment).

Property 2) TrS
{
ρ̂
}

is a separable state. i.e. it is of the form

TrS
{
ρ̂
}

=
∑
i

pi

NE⊗
k=1

ρ̂E
k

i

(∑
i

pi = 1
)

(5.16)

or
TrS

{
ρ̂
}

=
∫
p(x)

NE⊗
k=1

ρ̂E
k

x dx
( ∫

p(x)dx = 1
)

(5.17)

Notice that the state defined in Definition 4.1.2 satisfies the properties of Definition 5.0.1.

For every t > 0 we may deduce an approximate SBS state, in the sense of Definition
5.0.1 from ρ̂t (from 5.11) as follows. Let the PVM

{
P̂∆i,t

}
i

and
{
P̂E1

t
i

}
i

be von Neumann
measurement schemes for the system S and the environment E1 respectively. We may use
the PVM in (5.12) acting on S, for generating a partition, as the PVM associated with the
measurement scheme being used on S. The post-measurement states of the system and the
environment are expected to be in agreement with respect to the value of i. The following
is an approximate SBS state for the CV case.

1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)
(5.18)
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where N (t) is a normalization constant. In SBSCV theory we say that (5.18) is an SBS
state approximate to ρ̂t at time t > 0. To get the SBS state closest (in the trace distance
sense) to ρ̂t for a fixed t > we must solve the following optimization problem is solved

min
PVM

1
2

∥∥∥∥∥ρ̂t − 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥ (5.19)

where the minimum is taken over all PVMs acting on the environmental degree of freedom.
In general, it will not be impossible to solve these sorts of optimization problems (5.19).
We will only be interested in the asymptotic behavior of (5.19) with respect to t, hence we
seek only to bound (5.19) by something resembling (4.65) in the previous chapter for the
analogous problem in the discrete variables case.

Making strides towards an analog of (4.65) for the CV case we bound (5.19) as follows.

min
PVM

1
2

∥∥∥∥∥ρ̂t − 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥ = (5.20)

min
PVM

1
2

∥∥∥∥∥∑
i

∑
j

P̂∆i,t
ρ̂tP̂∆j,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥
1

(5.21)

which in turn may be bounded by two terms as follows.

min
PVM

1
2

∥∥∥∥∥∑
i

∑
j

P̂∆i,t
ρ̂tP̂∆j,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥
1

≤ (5.22)

min
PVM

1
2

∥∥∥∥∥∑
i

P̂∆i,t
ρ̂tP̂∆i,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥
1
+ (5.23)

1
2

∥∥∥∥∥∑
i

∑
j;j ̸=i

P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥∥
1

 = (5.24)

min
PVM

1
2

∥∥∥∥∥∑
i

P̂∆i,t
ρ̂tP̂∆i,t

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂E1
t

i

)
ρ̂t
(
P̂∆i,t

⊗ P̂E1
t

i

)∥∥∥∥∥
1

+ (5.25)

1
2

∥∥∥∥∥∑
i

∑
j;j ̸=i

P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥∥
1
. (5.26)

The approach we present here for tackling the SBSCV problem is that of studying the bound
above consisting of the terms (5.25) and (5.26). If this bound stabilizes to zero asymptotically
in t, then we can say that ρ̂t converges to an SBS state asymptotically in t. In what follows
we will dedicate a separate section to each of the terms (5.25) and (5.26) respectively. We will
refer to the term (5.25) as the diagonal term and to the term (5.26) as the off-diagonal term.
Before getting into the fact of the matter, we will briefly comment on the main mathematical
difficulty arising in SBSCV theory. We will then present useful bounds that will aid in
studying the diagonal and off-diagonal terms (5.25) and (5.26) respectively. Finally, we will
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put it all together and present the analog of (4.65) for the CV case.

5.1 Problems in SBS when Introducing Continuous Vari-
ables

With this section, we hope to shed light on our reasoning behind the new definition for
SBS presented in Definition 5.0.1.

There are dire hurdles that arise when attempting to define an SBS state for the case
where continuous variables are involved. To appreciate them, let us examine the state
(5.11) in such a case. The system’s state is now a density operator ρ̂S0 in an infinite-
dimensional Hilbert space; for our purposes, it will be convenient to take this space to be
L2(R). Analogously to (4.36), we define the interaction of the system with the environment
as

Hint = γX̂ ⊗ B̂ (5.27)
for simplicity; where X̂ is the position operator. Being a trace-class operator, ρ̂S0 can be
represented as an integral operator, whose kernel we denote by K(x, y). The expansion
analogous to (4.40) is the following:

ρ̂t =
∫ ∫

K(x, y)γ2
x,y(t)|x⟩⟨y| ⊗ ρ̂E

1
t

x,ydxdy (5.28)

where as expected ρ̂E
1
t

x,y := e−ixγB̂tρ̂E
1
0eiyγB̂t and γ2

x,y(t) := Tr
{
ρ̂E

2
t

x,y

}
. Unlike the state

(4.40), the state (5.28) does not have a clear decomposition into diagonal and off-diagonal
terms using the spectral decomposition of the operator X̂ in terms of generalized eigenvec-
tors

∣∣∣x〉, which we have employed to expand Ut

(
Et
(
ρ̂S0

)
⊗ ρ̂E0

)
=
(
e−itγX̂⊗B̂

)(
Et
(
ρ̂s0

)
⊗

ρ̂E0
)(
e−itγX̂⊗B̂

)
; herein we have dropped the subscripts and superscripts indicating that we

have traced over on environmental degree of freedom per the notional conventions prescribed
in equations (5.6) through (5.10). We shall forgo usage of such superscripts and subscripts
from now on unless the values of ME and NE are relevant.

In the finite-dimensional case, we could clearly distinguish between diagonal and off-
diagonal entries in order to deduce an SBS structure approximating the state in question
(see the work leading to 4.65 ). In the continuous variable case, this approach breaks down
since the diagonal term is now

ρ̂t =
∫
dxK(x, x)|x⟩⟨x| ⊗ ρ̂Et

x (5.29)

which is not a trace class operator, since it is unitarily equivalent to a tensor product of
a multiplication operator and a trace class operator—thus it cannot represent a quantum
state. Being able to separate between diagonal and off-diagonal terms in Chapter 4 was a
key step in our estimation process (what led to 4.65), to proceed similarly for the CV case
we must partition the state (5.28)by applying the partition (5.12) to the system’s degree of
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freedom.

Another difficulty in moving into the continuous variable case is an increase in complex-
ity when dealing with trace norms; starting from the fact that

∥∥∥∣∣∣x〉〈y∣∣∣∥∥∥
1

is undefined for
generalized states

∣∣∣x〉 and
∣∣∣y〉.

5.2 Partitioning (5.11)
To formally introduce our approach for the study of SBS in the CV case we will first

discuss the phenomenon of decoherence and its ramifications to our model (5.11). In this
case, decoherence arises from the quantum map Et in:

ρ̂t =
(
e−itγX̂⊗B̂

)(
Et
(
ρ̂S0

)
⊗ ρ̂E0

)(
eitγX̂⊗B̂

)
(5.30)

For the remainder of this chapter we will be assuming that the states ρ̂S0 and ρ̂E0 are pure.
As we have done in (5.28), we use the representation

ρ̂S0 =
∫ ∫

K(x, y)|x⟩⟨y|dxdy (5.31)

using the generalized eigenvectors of the position operator X̂. Using representation (5.31),
and refering back to (5.9), the effect of Et on ρ̂S0 is hence

Et
(
ρ̂S0

)
=
∫ ∫

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣dxdy (5.32)

where Γ(t, x, y) is a kernel yielding non-unitary dynamics obtained via partial tracing as seen
in (5.10). Substituting this into (5.30) we obtain

ρ̂t =
∫ ∫

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣⊗ ρ̂Et

x,ydxdy (5.33)

where we remind the reader that ρ̂Et
x,y := e−itγxB̂ρ̂E0eitγyB̂.

For fixed t > 0 we adopt a partition characterized by a POVM P̂∆i,t
:= χ∆i,t

(
X̂
)

acting
on the degree of freedom pertaining to the system, as was done in (5.12), in order to express
(5.33) as follows.

ρ̂t =
∑
i

∑
j

P̂∆i,t

( ∫ ∫
K(x, y)Γ(t, x, y)

∣∣∣x〉〈y∣∣∣⊗ ρ̂Et
x,ydxdy

)
P̂∆j,t

= (5.34)

∑
i

∑
j

( ∫ ∫
K(x, y)Γ(t, x, y)P̂∆i,t

∣∣∣x〉〈y∣∣∣P̂∆j,t
⊗ ρ̂Et

x,ydxdy
)

= (5.35)

∑
i

∑
j

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et
x,ydxdy (5.36)
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Once again, we call the elements of the sum (5.36) for which i ̸= j the off-diagonal terms
and the terms for which i = j the diagonal terms.

5.3 Estimating the Off-diagonal Terms (5.25)
Given a multipartite of the form prescribed in (5.36), the off-diagonal terms, i.e. i ̸= j,

may be estimated as follows. Focusing on (5.36) with i ̸= j, some elementary work leads to∥∥∥∥∥∑
i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣⊗ ρ̂Et

x,ydxdy

∥∥∥∥∥
1

= (5.37)

∥∥∥∥∥e−itγX̂⊗B̂

(∑
i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣dxdy)⊗ ρ̂E0

eitγX̂⊗B̂
∥∥∥∥∥

1
= (5.38)

∥∥∥∥∥
∑

i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣dxdy

⊗ ρ̂E0

∥∥∥∥∥
1

= (5.39)

∥∥∥∥∥∑
i

∑
j;j ̸=i

∫
∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣dxdy∥∥∥∥∥

1
≤ (5.40)

∑
i

∑
j;j ̸=i

∥∥∥∥∥
∫

∆i,t

∫
∆j,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣dxdy∥∥∥∥∥

1
= (5.41)

∑
i

∑
j;j ̸=i

∥∥∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥∥∥
1

(5.42)

where of course P̂∆i,t
:= χ∆i,t

(
X̂
)

=
∫

∆i,t

∣∣∣x〉〈x∣∣∣dx, i.e. the spectral projector of X̂ projecting
onto the subspace corresponding to the set ∆i,t. The trace norms

∥∥∥P̂∆i
Et
(
ρ̂S0

)
P̂∆j

∥∥∥
1

are in
general quite difficult to estimate. We present below two approaches; one is an adaptation
of the work in [47] and the other is an application of the main theorem of [51].

5.3.1 Bounds of the Kupsch Kind [47]
One approach to estimating the trace norms in equation (5.43) below invokes some ideas

from Kupsch’s seminal paper on decoherence [47], where it is proven that

∥P∆i
Et
(
ρ̂S0

)
P∆j

∥ ≤ C(1 + δ2ψ(t))−γ (5.43)

for intervals ∆j and ∆i separated by a distance δ > 0. Where ψ(t) ≥ 0 is a function that
diverges for t → ∞, γ an exponent which can be large, and C is some constant; unfortunately
there is no proof of this claim present in [47], the author is therefore led to believe that there
is perhaps something to do with the Paley -Wiener theorem [3] working in the background,
or maybe some basic Harmonic Analysis. Given that we will not be using (5.43), but a
variant rather, we will not worry too much about deriving (5.43) ourselves.
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We now present the variant to the bound found in the appendix of [47]. Again, we will
focus on the case where X̂ is the position operator.

Theorem 5.3.1 (Adapting Kupsch’s Bounds [47])

Let us fix t > 0 and let ρ̂t be some density operator which may be represented, using
the generalized spectrum of the position operator X̂, as

ρ̂t =
∫ ∫

Γ(t, x, y)K(x, y)
∣∣∣x〉〈y∣∣∣dxdy (5.44)

where Γ(t, x, y), K(x, y), and P̂∆i,t
are defined here as they were in (5.12). Then,

∥P̂∆i,t
ρ̂tP̂∆j,t

∥1 ≤ sup
(x,y)∈∆i,t×∆j,t

(
2|Γ(t, x, y)| + |∆j,t||∂yΓ(t, x, y)|

)
(5.45)

when ∣∣∣∣∆i,t × ∆j,t ∩ supp
{
Γ(t, x, y)K(x, y)

}∣∣∣∣ ̸= 0 (5.46)

otherwise
∥P̂∆i,t

ρ̂tP̂∆j,t
∥1 = 0 (5.47)

Proof. CASE 1)

If ∆i,t × ∆j,t is such that∣∣∣∣∆i,t × ∆j,t ∩ supp
{
Γ(t, x, y)K(x, y)

}∣∣∣∣ = 0 (5.48)

then ∥∥∥∥∥P̂∆i,t
ρ̂tP̂∆j,t

∥∥∥∥∥
1

=
∥∥∥∥∥
∫

∆i,t

∫
∆j,t

Γ(t, x, y)K(x, y)
∣∣∣x〉〈y∣∣∣dxdy∥∥∥∥∥

1
= (5.49)

∥∥∥∥∥
∫

∆i,t

∫
∆j,t

0
∣∣∣x〉〈y∣∣∣dxdy∥∥∥∥∥

1
= 0 (5.50)

CASE 2)
Now we assume that ∣∣∣∣∆i,t × ∆j,t ∩ supp

{
Γ(t, x, y)K(x, y)

}∣∣∣∣ ̸= 0 (5.51)

Let us begin by considering the operator

T̂t(y) :=
∫

∆i,t

Γ(t, x, y)
∣∣∣x〉〈x∣∣∣dx. (5.52)
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Where i is fixed. T̂t(y) is a differentiable family of operators, with respect to y, with the
operator norm estimate ∥∥∥T̂t(y)

∥∥∥ ≤ sup
x∈∆i,t

|Γ(t, x, y)| (5.53)

The latter follows from the following.∥∥∥T̂t(y)
∥∥∥2

= sup
∥|ψ⟩∥=1

∥∥∥T̂t(y)
∣∣∣ψ〉∥∥∥2

= (5.54)

sup
∥|ψ⟩∥=1

∫
∆i,t

∫
∆i,t

Γ(t, x′, y)∗Γ(t, x, y)
〈
ψ
∣∣∣x′
〉〈
x′
∣∣∣x⟩
〈
x
∣∣∣ψ〉dx′dx = (5.55)

sup
∥|ψ⟩∥=1

∫
∆i,t

|Γ(t, x, y)|2
〈
ψ
∣∣∣x〉〈x∣∣∣ψ〉dx ≤ (5.56)

sup
x∈∆i,t

|Γ(t, x, y)|2 sup
∥|ψ⟩∥=1

∫
∆i,t

|ψ(x)|2dx ≤ sup
x∈∆i,t

|Γ(t, x, y)|2 (5.57)

In a similar way we may bound the operator T̂′
t(y) :=

∫
∆i,t

Γ′(t, x, y)
∣∣∣x〉〈x∣∣∣dx. Where

Γ′(t, x, y) := ∂yΓ(t, x, y). i.e. ∥∥∥T̂′
t(y)

∥∥∥ ≤ sup
x∈∆i,t

|Γ′(t, x, y)| (5.58)

Furthermore, define Ĵt(y) := T̂t(y)ρ̂0 and Ĵ′
t(y) := T̂′

t(y)ρ̂0. These operators also have
uniform estimates; using the estimates computed above computed above, and the inequality
∥ÂĈ∥1 ≤ ∥Â∥∥Ĉ∥1 one may easily show that∥∥∥Ĵt(y)

∥∥∥
1

≤ sup
x∈∆i,t

|Γ(t, x, y)|
∥∥∥ρ̂0

∥∥∥
1

= sup
x∈∆i,t

|Γ(t, x, y)| (5.59)

and that ∥∥∥Ĵ′

t(y)
∥∥∥

1
≤ sup

x∈∆i,t

|Γ′(t, x, y)|
∥∥∥ρ̂0

∥∥∥
1

= sup
x∈∆i,t

|Γ′(t, x, y)|. (5.60)

We now proceed clarify the relationship between the operator T̂′
t(y) and the weak derivative

∂y
〈
ψ
∣∣∣T̂t(y)

∣∣∣ϕ〉.
∂y
〈
ψ
∣∣∣T̂t(y)

∣∣∣ϕ〉 = ∂y

∫
∆i,t

Γ(t, x, y)
〈
ψ
∣∣∣x〉〈x∣∣∣ϕ〉dx (5.61)

Assuming that Γ(t, x, y) is C1(∆i,t) with respect to y, with this we may now swap the order
of the integral and the derivative.

∂y

∫
∆i,t

Γ(t, x, y)
〈
ψ
∣∣∣x〉〈x∣∣∣ϕ〉dx =

∫
∆i,t

∂yΓ(t, x, y)
〈
ψ
∣∣∣x〉〈x∣∣∣ϕ〉dx = (5.62)

∫
∆i,t

Γ′(t, x, y)
〈
ψ
∣∣∣x〉〈x∣∣∣ϕ〉dx =

〈
ψ
∣∣∣( ∫

∆i,t

Γ′(t, x, y)
∣∣∣x〉〈x∣∣∣dx)∣∣∣ϕ〉 =

〈
ψ
∣∣∣T̂ ′

t(y)
∣∣∣ϕ〉 (5.63)
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We therefore have
∂y
〈
ψ
∣∣∣T̂t(y)

∣∣∣ϕ〉 =
〈
ψ
∣∣∣T̂′

t(y)
∣∣∣ϕ〉 (5.64)

Now, for all intervals ∆j,t we have
∫

∆j,t
Ĵt(y)

∣∣∣y〉〈y∣∣∣dy = P̂∆i,t
ρ̂tP̂∆j,t

.Let us define ∆j,t :=
[aj(t), bj(t)]. We will show that the following identity holds.∫

∆j,t

Ĵt(y)
∣∣∣y〉〈y∣∣∣dy = Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj)P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy. (5.65)

In what follows we will use the purity of ρ̂0 and write it in bra-ket notation, i.e. let
∣∣∣ξ0
〉〈
ξ0

∣∣∣ :=
ρ̂0. Now, For arbitrary

∣∣∣ψ〉 and
∣∣∣ϕ〉

〈
ψ
∣∣∣ ∫

∆j,t

Ĵt(y)
∣∣∣y〉〈y∣∣∣dy∣∣∣ϕ〉 =

∫
∆j,t

〈
ψ
∣∣∣Ĵt(y)

∣∣∣y〉〈y∣∣∣ϕ〉dy. (5.66)

By the definition of Ĵt(y) one has〈
ψ
∣∣∣Ĵt(y)|y⟩ = ⟨ψ|T̂t(y)ρ̂0

∣∣∣y〉 =
〈
ψ
∣∣∣T̂t(y)

∣∣∣ξ0
〉〈
ξ0

∣∣∣y〉. (5.67)

Picking up from (5.66).

(5.66) =
∫

∆j,t

〈
ψ
∣∣∣T̂t(y)

∣∣∣ξ0
〉〈
ξ0

∣∣∣y〉〈y∣∣∣ϕ〉dy = (5.68)

〈ψ|T̂t(y)
∣∣∣ξ0
〉〈
ξ0

∣∣∣( ∫ y

−∞
dy′
∣∣∣y′
〉〈
y′
∣∣∣)∣∣∣ϕ〉

∣∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

( ∫ y

−∞

〈
ξ0

∣∣∣y′
〉〈
y′
∣∣∣ϕ〉dy′

)
d

(〈
ψ
∣∣∣T̂t(y)

∣∣∣ξ0
〉)

=

(5.69)〈ψ∣∣∣T̂t(y)
∣∣∣ξ0
〉〈
ξ0

∣∣∣P(−∞,y]

∣∣∣ϕ〉
∣∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

( ∫ y

−∞

〈
ξ0

∣∣∣y′
〉〈
y′
∣∣∣ϕ〉dy′

)(〈
ψ
∣∣∣T̂t(y)

∣∣∣ξ0
〉)′

dy =

(5.70)〈ψ∣∣∣T̂t(y)
∣∣∣ξ0
〉〈
ξ0

∣∣∣P̂(−∞,y]

∣∣∣ϕ〉
∣∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

(〈
ψ
∣∣∣T̂t(y)

∣∣∣ξ0
〉)′〈

ξ0

∣∣∣P̂(−∞,y]

∣∣∣ϕ〉dy = (5.71)

〈
ψ
∣∣∣
T̂t(y)

∣∣∣ξ0
〉〈
ξ0

∣∣∣P̂(−∞,y]

∣∣∣∣∣∣
bj(t)

aj(t)

∣∣∣ϕ〉−
〈
ψ
∣∣∣
 ∫

∆j,t

T̂′
t(y)

∣∣∣ξ0
〉〈
ξ0

∣∣∣P̂(−∞,y]dy

∣∣∣ϕ〉 = (5.72)

〈
ψ
∣∣∣
Ĵt(y)P̂(−∞,y]

∣∣∣∣∣∣
bj(t)

aj(t)

−
∫

∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

)∣∣∣ϕ〉 = (5.73)

〈
ψ
∣∣∣
Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

∣∣∣ϕ〉 (5.74)
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and so∫
∆j,t

Ĵt(y)
∣∣∣y〉〈y∣∣∣dy = Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −

∫
∆j,t

Ĵ′
t(y)P̂(−∞,y]dy. (5.75)

Consequently ∥∥∥P̂∆i.t
ρ̂tP̂∆j,t

∥∥∥
1

=
∥∥∥∥∥
∫

∆j,t

Ĵt(y)|y⟩⟨y|dy
∥∥∥∥∥

1
= (5.76)

∥∥∥∥∥Ĵt(bj(t))P̂(−∞,bj(t)] − Ĵt(aj(t))P̂(−∞,aj(t)] −
∫

∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥∥
1

≤ (5.77)

∥∥∥Ĵt(bj(t))P̂(−∞,bj(t)]

∥∥∥
1

+
∥∥∥Ĵt(aj(t))P̂(−∞,aj(t)]

∥∥∥
1

+
∥∥∥∥∥
∫

∆j,t

Ĵ′
t(y)P̂(−∞,y]dy

∥∥∥∥∥
1

≤ (5.78)

∥∥∥Ĵt(bj(t)∥1∥P̂(−∞,bj(t)]

∥∥∥+
∥∥∥Ĵt(aj(t))∥∥∥1

∥∥∥P̂(−∞,aj(t)]

∥∥∥+
∫

∆j,t

∥∥∥Ĵt(y)′P̂(−∞,y]

∥∥∥
1
dy ≤ (5.79)

∥∥∥Ĵt(bj(t))∥∥∥1
+
∥∥∥Ĵt(aj(t))∥∥∥1

+
∫

∆j,t

∥∥∥Ĵ′
t(y)

∥∥∥
1

∥∥∥P̂(−∞,y]

∥∥∥dy = (5.80)
∥∥∥Ĵt(bj(t))∥∥∥1

+
∥∥∥Ĵt(aj(t))∥∥∥1

+
∫

∆j,t

∥∥∥Ĵ′
t(y)

∥∥∥
1
dy ≤ (5.81)∥∥∥Ĵt(bj(t))∥∥∥1

+
∥∥∥Ĵt(aj(t))∥∥∥1

+ |∆j,t| sup
y∈∆j,t

∥∥∥Ĵ′
t(y)

∥∥∥
1
dy ≤ (5.82)

sup
x∈∆i,t

|Γ(t, x, bj(t))| + sup
x∈∆i,t

|Γ(t, x, aj(t))| + |∆j,t| sup
x∈∆i,t

y∈∆j,t

|∂yΓ(t, x, y)| ≤ (5.83)

sup
(x,y)∈

∆i,t×∆j,t

(
2|Γ(t, x, y)| + |∆j,tΓ

′(t, x, y)|
)

(5.84)

5.3.2 Another Way to Estimate the Off-diagonal Terms (5.26)

In the previous section the kernel term Γ(t, x, y) characterizing the non-unitarity evolution
of the density operator in the hypothesis of Theorem 5.3.1 was treated in rather general
terms. However, if more is known about the kernel Γ(t, x, y), then one may employ yet
another technique for the estimation of

∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1
. Namely, we will utilize the

following theorem from [51] in order to bound the non-diagonal terms for the case where it
is known how to express P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

as a product of two trace class operators acting
in some measurable L2

(
M,µ

)
. We will focus on the case where M = R and µ is just the

Lebesgue measure.
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Theorem 5.3.2 (Theorem From Stolz et al [51])

Let A(x, z) and B(z, x) ∈ L2(R) ∀ z ∈ R and∫
∥A(·, z)∥L2(R)∥B(z, ·)∥L2(R)dz < ∞. (5.85)

Then there is a trace class operator ÂB̂ acting in L2(R) with kernel

AB(x, y) =
∫
A(x, z)B(z, y)dz (5.86)

such that ∥∥∥ÂB̂
∥∥∥

1
≤
∫

∥A(·, z)∥L2(R)∥B(z, ·)∥L2(R)dz (5.87)

The kernel operators Â and B̂ also act in L2(R) and have respective kernels A(x, y)
and B(x, y).

The first step toward the employment of Theorem 5.3.2 to the estimation of the terms
(5.42) is rewriting P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

as a product of of two operators. Let us fix t, and note
that the main challenge is the kernel Γ(t, x, y). Expanding we see that

P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

=
∫ ∫

Γ(t, x, y)ψS0(x)ψ∗
S0(y)χ∆i,t

(x)χ∆j,t
(y)
∣∣∣x〉〈y∣∣∣dxdy. (5.88)

Where we ψ∗
S0(x)ψS0(y) = K(x, y) is the kernel of ρ̂S0 . If the kernel Γ(t, x, y) were to have

the following decomposition

Γ(t, x, y) =
∫
ϕ(t, x, z)η(t, y, z)dz (5.89)

with ∫
|η(t, x, z)ϕ(t, y, z)|2dz < ∞ (5.90)

for all (t, x, y) ∈ R2, then Theorem 5.3.2 would be applicable. i.e. assuming (5.90) we have∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1]

(5.91)

=
∫ [ ∫ |ϕ(t, x, z)ψS0(x)χ∆i,t

(x)|2dx
][ ∫

|η(t, y, z)ψS0(y)χ∆j,t
(y)|2dy

]dz = (5.92)

∫ ∫ [ ∫ |ϕ(t, x, z)η(t, y, z)|2dz
]
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

dxdy ≤ (5.93)

[
max

(x,y)∈R2
|ϕ(t, x, z)η(t, y, z)|2

] ∫ ∫ |ψS0(x)χ∆i,t
(x)|2|ψS0(y)χ∆j,t

(y)|2
dxdy = (5.94)
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[

max
(x,y)R2

|ϕ(t, x, z)η(t, y, z)|2dz
]( ∫

∆i,t

|ψS0(x)|2dx
)( ∫

∆j,t

|ψS0(y)|2dy
)

≤ (5.95)

max
(x,y)∈R2

[
|ϕ(t, x, z)η(t, y, z)|2dz

]
< ∞ (5.96)

The Hypothesis of Theorem 5.3.2 is therefore satisfied, for all t > 0 as a matter of fact, and
we conclude that∥∥∥P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1

≤
∫

∥Ai,t(·, z)∥L2(R)∥Bj,t(z, ·)∥L2(R)dz (5.97)

with Ai,t(x, z) := ϕ(t, x, z)ψS0(x)χ∆i,t
(x) and Bj,t(z, x) := η(t, x, z)ψ∗

S0(x)χ∆j,t
(x).

We now formalize the above as a corollary to Theorem 5.3.2.

Corollary 5.3.1 (Corollary to Theorem (5.3.2))

If the kernel Γ(t, x, y) has a decomposition

Γ(t, x, y) =
∫
ϕ(t, x, z)η(t, y, z)dz (5.98)

with ∫
|η(t, x, z)ϕ(t, y, z)|2dz < ∞ (5.99)

for all (t, x, y) ∈ [0,∞) × R2, then∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1

≤
∫

∥Ai,t(·, z)∥L2(R)∥Bj,t(z, ·)∥L2(R)dz (5.100)

with Ai,t(x, z) := ϕ(t, x, z)ψS0(x)χ∆i,t
(x) and Bj,t(z, x) := η(t, x, z)ψ∗

S0(x)χ∆j,t
(x).

Proof. The proof is in the preceding discussion concluding with equation (5.97).

Example

For the case where the kernel Γ(t, x, y) = e−tnα(x−y)2 , n > 0, t > 0, we may express such a
function as a convolution of Gaussians. Namely,

Γ(t, x, y) = e−tnα(x−y)2 = 2
√
tnα

π

∫
e−2tnα(x−z)2

e−2tnα(y−z)2
dz. (5.101)

In this case the ϕ and η from (5.90) are just

ϕ(t, x, z) =

√√√√2
√
tnα

π
e−2tnα(x−z)2 (5.102)
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and

η(t, y, z) =

√√√√2
√
tnα

π
e−2tnα(y−z)2

. (5.103)

Notice that here∫
|ϕ(t, x, z)η(t, y, z)|2dz = 4tn

π

∫
e−4tnα(x−z)2

e−4tnα(y−z)2
dz = 4tnα

π

√
π

2 3
2
√
tnα

e−2tnα(x−y)2 =

(5.104)√
2tnα√
π

e−2tnα(x−y)2
< ∞ (5.105)

for all t ∈ [0,∞) and (x, y) ∈ R2. With such a ϕ and η, we can bound the corresponding
inequality (5.97) as follows. ∥∥∥P̂∆i

Et
(
ρ̂S0

)
P̂∆j

∥∥∥
1

= (5.106)
∫ ∫ [ ∫ |ϕ(t, x, z)η(t, y, z)|2dz

]
|ψS0(x)χ∆i,t

(x)|2|ψS0(y)χ∆j,t
(y)|2

dxdy = (5.107)

∫ ∫ √
2tnα√
π

e−2tnα(x−y)2|ψS0(x)χ∆i,t
(x)|2|ψS0(y)χ∆j,t

(y)|2
dxdy = (5.108)

∫
∆i,t

∫
∆j,t

√
2tnα√
π

e−2tnα(x−y)2|ψS0(x)|2|ψS0(y)|2
dxdy (5.109)

The Kernel
√

2tnα√
π
e−2tnα(x−y)2 is proportional to a delta sequence with respect to t. Therefore

t becomes arbitrarily large the support of the integrand of (5.109) narrows along the diagonal
elements x ̸= y of ∆i × ∆j,t. However, x ∈ ∆i,t, y ∈ ∆j,t, and (∆i,t ∩ ∆j,t = ∅), hence (5.109)
vanishes as t → ∞.

Gaussian states are popular enough that the latter discussion merits emphasis as yet
another corollary of Theorem 5.3.2.

Corollary 5.3.2 (Theorem (5.3.2) with Gaussian assumptions for
Γ(t, x, y). )

Let
Γ(t, x, y) = e−tnα(x−y)2 = 2

√
tnα

π

∫
e−2tnα(x−z)2

e−2tnα(y−z)2
dz (5.110)

where n > 0, then

1)
∥∥∥P̂∆i,t

Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1

=
∫

∆i,t

∫
∆j,t

√
2tnα√
π

e−2tnα(x−y)2|ψS0(x)|2|ψS0(y)|2
dxdy

(5.111)
2) lim

t→∞

∥∥∥P̂∆i,t
Et
(
ρ̂S0

)
P̂∆j,t

∥∥∥
1

= 0 (5.112)
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Proof. The proof is in the preceding discussion concluding with equation (5.109).

5.4 Estimating the Diagonal Terms (5.25)
We have hitherto developed the tools necessary to estimate the trace norm of the off-

diagonal (5.26) arising from estimates of the optimization problem (5.20). To conclude our
estimation of the optimization problem (5.20) we now study the diagonal terms (5.25). i.e.

min
PVM

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

(5.113)

Where N is a normalization term. The minimization is taken over all PVMs (projection
valued measures) resolving the identity operator of the space associated with the environ-
mental degrees of freedom. Recall that ∑i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

is just another way

writing ρ̂t(see 5.12). The use of the PVM
{
P̂∆i,t

}
i

in the first term of the difference in
(5.113) is just technical. However, the usage of the same PVM on the second term in the
difference of (5.113) does imply measurement of the von Neumann type performed on the
system; i.e in a local sense in the sense Definition 2.2.3. When estimating the off-diagonal
terms (5.26), we were only tasked with studying its asymptotic behavior with respect to t
since the families of PVM acting on the system’s degree of freedom, P̂∆i,t

were assumed to be
predetermined. For the case of the diagonal terms (5.25), we are now tasked with studying
the limit of an optimization problem (5.113). This is now a more challenging problem since
one would need a way to estimate the optimal PVM acting on the environmental degrees
of freedom in (5.113) for each value of t > 0 in order to understand the asymptotic behavior
of this optimization problem.

One might have already noted that the map ∑
i P̂∆i,t

⊗ P̂Et
i

(
...
)
P̂∆i,t

⊗ P̂Et
i is unlike

the related measurements of von Neumann type seen in Definition 2.2.3 since they do not
preserve the trace. Both are indeed completely positive maps, but the latter map turns out
to reduce the trace in general, i.e.

Tr

{∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)}
≤ Tr{ρ̂t} = 1. (5.114)

Indeed, the PVM {P̂∆i
⊗ P̂Et

i }i by itself does not describe a measurement for the product
of the system’s and environment’s Hilbert spaces because it does not resolve the identity
of the entire Hilbert space HS ⊗ HE but rather the identity of a subspace of HS ⊗ HE;
hence the need for the normalization constant N in (5.113). The associated PVM, which
preserves trace, and resolves the identity of HS ⊗ HE, is indeed the family of projectors{
P̂∆i,t

⊗ P̂Et
j

}
i,j

. This set includes measurement situations where the environment E mea-
sures an outcome j which differs from the outcome measured by the system S i ̸= j. Hence
the removal of such elements, which are not in line with objectivity per Definitions 4.1.1 and
4.1.2



5.4. ESTIMATING THE DIAGONAL TERMS (5.25) 137

Let us now estimate (5.113). We begin by rewriting the operator ∑i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗

I
)

in the form described by the following Lemma:

Lemma 5.4.1 (Rewriting (5.113))

∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

=
∑
i

p̄i(t)Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
(5.115)

where
ρ̂Si,t

=
∫
R

∫
R
Ki,t(x, y)|x⟩⟨y|dxdy (5.116)

Ki,t(x, y) :=
1∆i,t

(x)ψ(x)√
p̄i(t)

1∆i,t
(y)ψ∗(y)√
p̄i(t)

(5.117)

p̄i(t) :=
∫

∆i,t

K(x, x)dx, (5.118)

ψ(x)ψ∗(y) = K(x, y) (5.119)
and recalling that

Ut(Â) := e−itγX̂⊗B̂ÂeitγX̂⊗B̂ (5.120)

Proof.
∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

=
∑
i

∫
∆i,t

∫
∆i,t

K(x, y)Γ(t, x, y)
∣∣∣x〉〈y∣∣∣⊗ ρ̂Et

x,ydxdy = (5.121)

∑
i

p̄i(t)
∫

∆i,t

∫
∆i,t

K(x, y)
p̄i(t)

Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et
x,ydxdy = (5.122)

where
p̄i(t) :=

∫
∆i,t

K(x, x)dx. (5.123)

That is,
(5.122) =

∑
i

p̄i(t)
∫
R

∫
R
Ki,t(x, y)Γ(t, x, y)|x⟩⟨y| ⊗ ρ̂Et

x,ydxdy (5.124)

recalling that K(x, y) = ψ(x)ψ∗(y) owing to the purity of ρ̂S0 , we define

Ki,t(x, y) := 1∆i,t
(x)1∆i,t

(y)K(x, y)
p̄i(t)

=
1∆i,t

(x)ψ(x)√
p̄i(t)

1∆i,t
(y)ψ∗(y)√
p̄i(t)

. (5.125)

Furthermore, let us define
ψSi,t

(x) :=
1∆i,t

(x)ψ(x)√
p̄i(t)

(5.126)
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and write
Ki,t(x, y) = ψ∗

Si,t
(x)ψSi,t

(y)
(
Kernel of

∣∣∣ψSi,t

〉〈
ψSi,t

∣∣∣ ) (5.127)
Finally,

(5.124) =
∑
i

p̄i(t)Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
(5.128)

where we define

ρ̂Si,t
:=

P̂∆i,t
ρ̂S0P̂∆i,t

Tr
{
P̂∆i,t

ρ̂S0P̂∆i,t

} =
∫
R

∫
R
Ki,t(x, y)|x⟩⟨y|dxdy (5.129)

and utilize the definition of Ut presented in (5.6) with g = γ and NE = 1, i.e.

Ut(Â) := e−itγX̂⊗B̂ÂeitγX̂⊗B̂. (5.130)

Employing Lemma 5.4.1 we may now write
∑
i

(
P̂∆i,t

⊗P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗P̂Et
i

)
=
∑
i

p̄i(t)
(
I⊗P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ρ̂E0

)(
I⊗P̂Et

i

)
(5.131)

Finally, normalizing the operator (dividing by its trace) (5.131) we obtain an approximate
SBSCV state to ρ̂t.

ρ̂SBSCV,t := 1
N (t)

∑
i

p̄i(t)
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

)
. (5.132)

Just as we did for the case of discrete variables in the previous chapter (see equations (4.58)
through (4.65)) we will be estimating

∥∥∥ρ̂t − N (t)ρ̂SBSCV,t
∥∥∥

1
first, and then, using Lemma

4.4.1 we shall bound
∥∥∥ρ̂t − ρ̂SBSCV,t

∥∥∥
1
.

The representation (5.132) makes transparent the structure of the dynamics being im-
posed on the total initial states ρ̂S0 ⊗ ρ̂E0 to the extent that we are made aware of all of the
quantum maps generating the dynamics. i.e.

Λt ◦ Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
(5.133)

where IE is the identity map on the environmental degrees of freedom and

Λt(Â) :=
∑
i

1
N (t)

∑
i

p̄i(t)
(
I ⊗ P̂Et

i

)
Â
(
I ⊗ P̂Et

i

)
. (5.134)

It is clear that the quantum maps Λt and Et⊗IE commute due to their non-trivial influences
taking effect only in complementary subspaces. What is more interesting and less obvious is
the commutativity between Et ⊗ IE and the unitary map Ut. Proving this is the content of
the following lemma (Lemma 5.4.2); a lemma that we shall need for the proof of the main
result of this chapter.
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Lemma 5.4.2 (Commutativity of Et ⊗ IE and Ut)

Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
=
(
Et ⊗ IE

)
◦ Ut

(
ρ̂S0 ⊗ ρ̂E0

)
(5.135)

Proof. We remind the reader that we are always working within the framework discussed
in the introduction to this chapter (see equations (5.3) through 5.11)). With this in mind,
define Vt

(
Â
)

:= e−itγ′X̂⊗IE⊗B̂′
(
Â
)
eitγ

′X̂⊗IE⊗B̂′ .Then,

Ut ◦
(
Et ⊗ IE

)(
ρ̂S0 ⊗ ρ̂E0

)
= Ut

TrE′

{
Vt

(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0

)} = (5.136)

(
Ut ⊗ IE′

)
◦
(

ISE ⊗ TrE′

)
◦ Vt

(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0

)
(5.137)

Where I is the identity quantum map acting in the combined degrees of freedom of the system
S and the environment E. By virtue of the fact that the quantum maps ISE ⊗ TrE′ and
Ut ⊗ IE′ produce non-trivial effects only on complementary subspaces, these two commute.
Hence

(5.137) =
(

ISE ⊗ TrE′

)
◦
(
Ut ⊗ IE′

)
◦ Vt

(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0

)
(5.138)

Furthermore, it is easy to see that the generators of the unitary maps Ut ⊗ IE′ and Vt
commute. Namely X̂ ⊗ B̂ ⊗ IE′ and X̂ ⊗ IE ⊗ B̂′. We therefore have the following.

(5.138) =
(

ISE ⊗ TrE′

)
◦ Vt ◦

(
Ut ⊗ IE′

)(
ρ̂S0 ⊗ ρ̂E0 ⊗ ρ̂E

′
0

)
= (5.139)

(
ISE ⊗ TrE′

)
◦ Vt

(
Ut

(
ρ̂S0 ⊗ ρ̂E0

)
⊗ ρ̂E

′
0

)
= (5.140)

TrE′

{
Vt

(
Ut

(
ρ̂S0 ⊗ ρ̂E0

)
⊗ ρ̂E

′
0

)}
=
(
Et ⊗ IE

)(
Ut

(
ρ̂S0 ⊗ ρ̂E0

))
= (5.141)

(
Et ⊗ IE

)
◦ Ut

(
ρ̂S0 ⊗ ρ̂E0

)
(5.142)

Note that this proof is independent of the states ρ̂S0 and ρ̂E0 .

The following corollary follows from Theorem (5.4.2).
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Corollary 5.4.1 (A Et independent estimate)

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

≤ (5.143)

∑
i

p̄i(t)
∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

(5.144)

Proof. ∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

= (5.145)

∥∥∥∥∥∑
i

p̄i(t)
(
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
−
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

))∥∥∥∥∥
1

≤ (5.146)

∑
i

p̄i

∥∥∥∥∥Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)
−
(
I ⊗ P̂Et

i

)
Ut

(
Et
(
ρ̂Si,t

)
⊗ ρ̂E0

)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

≤ (5.147)

∑
i

p̄i

∥∥∥∥∥Et
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

≤ (5.148)

∑
i

p̄i

∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

(5.149)

where we have used Theorem 5.4.2 going from (5.147) to (5.148), and in going from (5.148)
to (5.149) we used the contractivity property of quantum maps (see Theorem 2.3.1).

Without the effects of the quantum map Et, the term Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

in (5.144) is now
pure; recall that ρ̂E0 was assumed pure and ρ̂Si,t

=
∣∣∣ψSi,t

〉〈
ψSi,t

∣∣∣ (5.127), where
∣∣∣ψSi

〉
is a pure

state. To accentuate the latter we write ρ̂E0 =
∣∣∣ψE0

〉〈
ψE0

∣∣∣, we write ρ̂Si,t
=
∣∣∣ψSi,t

〉〈
ψSi,t

∣∣∣ in
place of ρ̂Si,t

, and we use the definition of the map Ut to express it as left and right product
of unitary operators.

Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

= Ût

(∣∣∣ψSi,t

〉〈
ψSi,t

∣∣∣⊗ ∣∣∣ψE0

〉〈
ψE0

∣∣∣)Û†
t = (5.150)

(
Ût

(∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉))(
Ût

(∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉))†

(5.151)

where of course Ût := e−itγX̂⊗B̂. It therefore follows that(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(

I ⊗ P̂E1
t

i

)
= (5.152)
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(
I ⊗ P̂Et

i Ût

(∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉))(
I ⊗ P̂Et

i Ût

(∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉))†

(5.153)

We are now ready to present the main theorem of this section.

Theorem 5.4.1 (Estimating the Diagonal Terms (5.25))

min
P V M

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥
1

≤ (5.154)

min
P V M

2
√∑

i

p̄i(t)
(

1 − Tr

{
P̂Et

i Λt,i

(∣∣ψE0

〉〈
ψE0

∣∣)P̂Et
i

})
(5.155)

Here we have defined Λi,t as follows.

Λt,i

(
ρ̂
)

:=
∫

|ψSi,t
(x)|2

(
e−itγxB̂ρ̂eitγxB̂

)
dx (5.156)

Proof. First, we will compute the following traces. Recall that Ki,t(x, y) := ψ∗
Si,t

(x)ψSi,t
(y)

Ni(t) := Tr

{(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(

I ⊗ P̂Et
i

)}
= (5.157)

〈
ψSi,t

∣∣∣⊗ 〈
ψE0

∣∣∣Û†
t

(
I ⊗ P̂Et

i

)
Ût

∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉
= (5.158)∫ ψ∗

Si,t
(y)
〈
y
∣∣∣dy ⊗

〈
ψE0

∣∣∣
Û†

t

(
I ⊗ P̂Et

i

)
Ût

∫ ψSi,t
(x)
∣∣∣x〉dx⊗

∣∣∣ψE0

〉 = (5.159)

∫ ∫
ψ∗
Si,t

(x)ψSi,t
(y)
〈
y
∣∣∣x〉(〈ψE0

∣∣∣eitγyB̂P̂Et
i e

−itγxB̂
∣∣∣ψE0

〉)
dxdy = (5.160)∫ ∣∣∣ψ∗

Si,t
(x)
∣∣∣2(〈ψE0

∣∣∣eitγyB̂P̂Et
i e

−itγxB̂
∣∣∣ψE0

〉)
dx = (5.161)∫ ∣∣∣ψ∗

Si,t
(x)
∣∣∣2(〈ψE0

∣∣∣eitγyB̂P̂Et
i P̂Et

i e
−itγxB̂

∣∣∣ψE0

〉)
dx = (5.162)

∫
|ψSi,t

(x)|2
(
Tr
{
P̂Et
i e

−itγxB̂
∣∣∣ψE0

〉〈
ψE0

∣∣∣eitγxB̂P̂Et
i

})
dx = (5.163)

Tr

P̂Et
i

(∫
|ψSi,t

(x)|2
(
e−itγxB̂

∣∣∣ψE0

〉〈
ψE0

∣∣∣eitγxB̂
)
dx

)
P̂Et
i

 = (5.164)

Tr

{
P̂Et
i Λi,t

(∣∣∣ψE0

〉〈
ψE0

∣∣∣)P̂Et
i

}
(5.165)

Here the quantum map Λi,t is defined as follows.

Λi,t

(
ρ̂
)

:=
∫

|ψSi,t
(x)|2

(
e−itγxB̂ρ̂eitγxB̂

)
dx (5.166)
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Now let us compute the following trace distance via an employment of Lemma 2.3.1.∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

= (5.167)

∥∥∥∥∥
(

Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))(
Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉))†

−

(
I ⊗ P̂Et

i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉)√
Ni(t)

)(
I ⊗ P̂Et

i Ût

(∣∣ψSi,t

〉
⊗
∣∣ψE0

〉)√
Ni(t)

)†∥∥∥∥∥
1

=

(5.168)√√√√√√1 −

∣∣∣∣∣∣
〈
ψSi,t

∣∣∣⊗ 〈
ψE0

∣∣∣Û†
t

(
I ⊗ P̂Et

i

)
Ût

∣∣∣ψSi,t

〉
⊗
∣∣∣ψE0

〉
√

Ni(t)

∣∣∣∣∣∣
2

= (5.169)

√√√√√1 −
∣∣∣∣∣ Ni(t)√

Ni(t)

∣∣∣∣∣
2

=
√

1 − Ni(t) (5.170)

Hence,

Ni(t) = Tr

{
P̂Et
i Λi,t

(∣∣∣ψE0

〉〈
ψE0

∣∣∣)P̂Et
i

}
(5.171)

and∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

=
√

1 − Ni(t) (5.172)

Using Corollary (5.4.1) our only task in proving Theorem 5.4.1 will be to estimate (5.144).
Using (5.171) and (5.172) we get the following.

∑
i

p̄i(t)
∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

−
(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1

≤ (5.173)

∑
i

p̄i(t)
∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I ⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I ⊗ P̂Et

i

)∥∥∥∥∥
1
+ (5.174)

∥∥∥∥∥ 1
Ni(t)

(
I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I⊗P̂Et

i

)
−
(
I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I⊗P̂Et

i

)∥∥∥∥∥
1

 = (5.175)

∑
i

p̄i(t)
[∥∥∥∥Ut

(
ρ̂Si,t

⊗ρ̂E0
)
− 1

Ni(t)
(
I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ρ̂E0
)(
I⊗P̂Et

i

)∥∥∥∥
1
+
∣∣ 1
Ni(t)

−1
∣∣∥∥∥∥(I⊗P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ρ̂E0
)(
I⊗P̂Et

i

)∥∥∥∥
1

]
=

(5.176)∑
i

p̄i(t)
∥∥∥∥∥Ut

(
ρ̂Si,t

⊗ ρ̂E0
)

− 1
Ni(t)

(
I⊗ P̂Et

i

)
Ut

(
ρ̂Si,t

⊗ ρ̂E0
)(
I⊗ P̂Et

i

)∥∥∥∥∥
1
+
∣∣∣ 1
Ni(t)

−1
∣∣∣Ni(t)

 =

(5.177)∑
i

p̄i(t)
√1 − Ni(t) + 1 − Ni(t)

 ≤
∑
i

p̄i(t)
2
√

1 − Ni(t)
 = (5.178)
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2
∑
i

p̄i(t)
√

1 − Ni(t) ≤ 2
√∑

i

p̄i(t)
(
1 − Ni(t)

)
= (5.179)

2

√√√√∑
i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣∣ψE0

〉〈
ψE0

∣∣∣)P̂Et
i

})
(5.180)

Here we have employed Jensen’s inequality for concave functions in (5.179).
By virtue of Corollary 5.4.1 we therefore have

1
2

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

−
∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

≤ (5.181)

√√√√∑
i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣∣ψE0

〉〈
ψE0

∣∣∣)P̂Et
i

})
(5.182)

Finally, a simple application of Lemma 4.4.1 leads to

1
2

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

≤ (5.183)

2

√√√√∑
i

p̄i(t)
(

1 − Tr

{
P̂Et
i Λi,t

(∣∣∣ψE0

〉〈
ψE0

∣∣∣)P̂Et
i

})
(5.184)

Taking the minimum overall PVM acting on the environmental degrees of freedom on both
sides of inequality (5.183) (5.184) we get the result we set out to prove.

Theorem 5.4.1 may be easily generalized to support the setting where NE environments
are present and ME environments have been traced out as discussed in equations (5.3)
through (5.11). We present this without proof since the steps are analogous to all of the
steps involved in proving Theorem 5.4.1.

Theorem 5.4.2 (Estimating the Diagonal Terms (5.25) for NE Environ-
ments)

min
P V M

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (5.185)

min
P V M

2

√√√√∑
i

p̄i(t)
(

1 − Tr

{
NE⊗
k=1

P̂Ek
t

i Λi,t

(
NE⊗
k=1

∣∣ψEk
0

〉〈
ψEk

0

∣∣) NE⊗
k=1

P̂Ek
t

i

})
(5.186)

Here we have defined Λi,t as follows.

Λi,t

(
ρ̂
)

:=
∫

|ψSi,t(x)|2
(
e−itx

∑NE

k=1
gkB̂k ρ̂eitγx

∑NE

k=1
B̂k

)
dx (5.187)

All of the B̂k act on their respective Hilbert space.
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A little thought convinces one that if we were to constrain ourselves to the case where
all of the ρ̂E

k
0 are identical and all of the gkB̂k are identical, then Theorem (5.4.1) takes the

following simpler form.

Corollary 5.4.2 (Estimating the Diagonal Terms (5.25) for NE Environ-
ments)

min
P V M

1
2

∥∥∥∥∑
i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥
1

≤ (5.188)

min
P V M

2

√√√√∑
i

p̄i(t)
(

1 −
∫

|ψSi,t(x)|2
〈
ψEt(x)

∣∣P̂Et
i

∣∣ψEt(x)
〉NE

dx

)
(5.189)

where ∣∣ψEt
(x)
〉

:= e−itxgB̂∣∣ψE0

〉
(5.190)

Notice that the object in the square root of (5.189) is the general case of the bound en-
countered in (3.191) where NE = 1, the ambient Hilbert space was L2

(
R), and the equivalent

in (3.191) of K(x, x) (kernel of ρ̂S0 here was compactly supported; this in turn lead to a
finite set of partitions ∆i,t and a specific PVM

{
P̂Et
i which grew more optimal (in the sense

of fully solving the respective QSD problem) as t grew large.
Theorems 5.4.1 and 5.4.2, and Corollary 5.4.2 are tools that may aid in the estimation

of the diagonal terms (5.25). The drawback to these bounds is that they require one to find
an approximately optimal PVM acting on the environmental degrees of freedom, this is in
contrast with the discrete variables, where we devised a PVM independent bound ( 4.2.2 ).
It is important to note that the density operators Λt,i

(
ρ̂E0

)
are not pure, we may therefore

not apply Theorem 4.2.2 in general. In order for 4.2.2 to be applicable the Λi,t

(
ρ̂E0

)
must

be approximately pure. To see this let us consider the term in the square root of (5.186).
Now, define ρ̂Et

xi
:= e−itγxiB̂ρ̂E0eitγxiB̂, where xi :=

∫
x|ψSi,t

(x)|2dx. We have the following

1 − Tr
{
P̂Et
i Λi,t

(
ρ̂E0

)
P̂Et
i

}
≤ (5.191)

∥∥∥∥∥Λi,t

(
ρ̂E0

)
− P̂Et

i Λi,t

(
ρ̂E0

)
P̂Et
i

∥∥∥∥∥
1

= (5.192)
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi
+ ρ̂E

1
t

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i + P̂Et

i ρ̂Et
xi

P̂Et
i − P̂Et

i Λt,i

(
ρ̂E0

)
P̂Et
i

∥∥∥∥∥
1

≤ (5.193)
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

+
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

+
∥∥∥∥∥P̂Et

i ρ̂Et
xi

P̂Et
i − P̂Et

i Λi,t

(
ρ̂E0

)
P̂Et
i

∥∥∥∥∥
1

≤ (5.194)
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

+
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

+
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

= (5.195)
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2
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂E

1
t

xi

∥∥∥∥∥
1

+
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

= (5.196)

With this result, we now bound (5.186).

2 min
PVM

√√√√∑
i

p̄i(t)
(

1 − Tr
{
P̂Et
i Λi,t

(
ρ̂E0

)
P̂Et
i

})
≤ (5.197)

2 min
PVM

√√√√∑
i

p̄i(t)
(

2
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

+
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

)
≤ (5.198)

2

√√√√2
∑
i

p̄i(t)
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

+ 2 min
PVM

√√√√∑
i

p̄i(t)
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

)
(5.199)

We will write the latter result as a lemma.

Lemma 5.4.3 (Diagonal terms of the SBS problem for continuous vari-
ables, further estimates)

min
PVM

1
2

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗ I
)

ρ̂t

(
P̂∆i,t

⊗ I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗ P̂Et
i

)
ρ̂t

(
P̂∆i,t

⊗ P̂Et
i

)∥∥∥∥∥
1

≤

(5.200)

2

√√√√2
∑
i

p̄i(t)
∥∥∥∥∥Λi,t

(
ρ̂E0

)
− ρ̂Et

xi

∥∥∥∥∥
1

+ 2 min
PVM

√√√√∑
i

p̄i(t)
∥∥∥∥∥ρ̂Et

xi
− P̂Et

i ρ̂Et
xi

P̂Et
i

∥∥∥∥∥
1

(5.201)

This can be easily extended to the case where we have more than one environmental
degree of freedom. In such a case, Lemma 5.4.3 becomes.

Corollary 5.4.3 (Diagonal terms for continuous variables NE macro-
environment case; further estimates)

min
PVM

1
2

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥∥
1

≤

(5.202)√√√√√2
∑
i

p̄i(t)
∥∥∥∥∥∥Λi,t

 NE⊗
k=1

ρ̂E
k
0

−
NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥∥
1

+ min
PVM

√√√√√∑
i

p̄i(t)
∥∥∥∥∥∥
NE⊗
k=1

ρ̂E
k
t

xi
−

NE⊗
k=1

P̂Ek
t

i ρ̂E
k
t

xi
P̂Ek

t
i

∥∥∥∥∥∥
1

(5.203)

Using Lemmas 5.4.3 and 4.1 we obtain the following useful corollary.
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Corollary 5.4.4 (Further estimates)

1
2 min
PVM

∥∥∥∥∥∑
i

(
P̂∆i,t

⊗I
)

ρ̂t

(
P̂∆i,t

⊗I
)

− 1
N (t)

∑
i

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)
ρ̂t

(
P̂∆i,t

⊗
NE⊗
k=1

P̂Ek
t

i

)∥∥∥∥∥
1

≤

(5.204)√√√√2
∑
i

p̄i(t)
NE∑
k=1

∫
|ψSi,t

(x)|2
∥∥∥∥ρ̂Ek

t
x − ρ̂E

k
t

xi

∥∥∥∥
1
dx+ min

PVM

√√√√∑
i

p̄i(t)
NE∑
k=1

∥∥∥∥ρ̂Ek
t

xi
− P̂Ek

t
i ρ̂E

k
t

xi
P̂Ek

t
i

∥∥∥∥
1

(5.205)

Proof. First note that∥∥∥∥∥∥Λi,t

 NE⊗
k=1

ρ̂E
k
0

−
NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥
∫

|ψSi,t
(x)|2

(
NE⊗
k=1

ρ̂E
k
t

x

)
dx−

NE⊗
k=1

ρ̂E
k
t

xi

∥∥∥∥∥∥
1

= (5.206)

∥∥∥∥∥∥
∫

|ψSi,t
(x)|2

(
NE⊗
k=1

ρ̂E
k
t

x −
NE⊗
k=1

ρ̂E
k
t

xi

)
dx

∥∥∥∥∥∥
1

≤ (5.207)

∫
|ψSi,t

(x)|2
∥∥∥∥∥∥
(

NE⊗
k=1

ρ̂E
k
t

x −
NE⊗
k=1

ρ̂E
k
t

xi

)∥∥∥∥∥∥
1

dx. (5.208)

Using the latter, the proof follows directly from Lemma 4.1 and Theorem 5.4.3 by noting
that ∥∥∥ρ̂Ek

t
x

∥∥∥
1

= 1 (5.209)

for all t, k and x.

If the first term of (5.205) is small then we may benefit from the use of Theorem 4.2.2 in
estimating the second term of 5.205.

5.4.1 How General Can X̂ Be?
The operator X̂ may be taken to be a more general self-adjoint operator, so long as it has

purely continuous spectrum, and in particular a non-empty Rajchman subspace, then all of
the above work of this chapter has an analog with some modifications. To see this we write
X̂ in its spectral decomposition form, using the spectral theorem, i.e.

X̂ =
∫
σ(X̂)

λdÊλ (5.210)

where dÊλ is a PVM. Now, notice that the operator (5.30) may be expressed as(
e−itγX̂⊗B̂

)(
Et
(
ρ̂S0

)
⊗ ρ̂E

1
0
)(
eitγX̂⊗B̂

)
= (5.211)

∫ ∫ dÊλ

dλ
Et
(
ρ̂S0

)dÊλ′

dλ′ ⊗ e−itγλB̂ρ̂E
1
0eitγλ

′B̂dλdλ′. (5.212)
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Using this operator and developing the respective appropriate partition, as we did for the
position operator in (5.36), we may attain analogs to all of the theorems in the previous
subsections of this chapter. This includes Theorem 5.4.2. Care must be taken in making sense
of the terms dÊλ

dλ
however. For the case where X̂ is simply assumed to be a multiplication

operator with a purely absolutely continuous spectrum, the treatment becomes virtually
identical to that of the case where X̂ is a position operator. In this chapter, we have focused
on the case where X̂ is the position operator. In future work, we might push toward further
generalities.
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Concluding Remarks and Future
Work.

In this work the central object of study has been

TrENE+1,ENE+2,...,EN

{
e−itX̂⊗

∑N

k=1 gkB̂k

ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0

eitX̂⊗
∑N

k=1 gkB̂k

}
. (5.213)

In Chapter 5 we have made significant strides in defining what the associated SBS state of
(5.213) should be (SBSCV), and developing techniques for estimating the proximity between
(5.213) and its associated SBS state. We have done the analogous work in Chapter 4 for
the case of discrete variables; albeit a formulation of SBS for discrete variables predates this
dissertation. However, there is much left to be desired as the form of (5.213) is rather restric-
tive. In future work, we would like to consider the cases where the quantum-measurement
limit and the von Neumann interaction operator assumptions are relaxed. i.e. we would like
to consider the case where Ĥtot is not approximately Ĥint and the interaction term Ĥint does
not have the tensor product form (von Neumann interaction) X̂ ⊗ ∑N

k=1 gkB̂k. It would be
interesting to find out for which families of Ĥtot one is able to prove that there exist time
domains for which the dynamics push the state

ρ̂t := TrENE+1,ENE+2,...,EN

{
e−itĤtot

ρ̂S0 ⊗
N⊗
k=1

ρ̂E
k
0

eitĤtot

}
. (5.214)

into an SBS/SBSCV regime. Of course in this case estimating the respective SBS proximity
will be much more daunting since we will in general not be able to execute the decomposi-
tions (5.4) (4.40) which were key in estimating the SBS and SBSCV problems for the von
Neuman type interactions case in Chapters 4 and 5. If progress could be made in estimating
5.214 with a more general Ĥtot, then a next step of interest would be to relax the separable
initial state condition. i.e. rather than considering the case where ρ̂S0 ⊗ ⊗N

k=1 ρ̂E
k
0 as our

total initial state, we could consider an arbitrary ρ̂0 ∈ S
(
HS ⊗ ⊗NE

k=1 HEk

)
as the total

initial state. It would be very interesting to prove that SBS states arise for a broader family
of dynamics and initial states.

As a parting remark, we heuristically discuss what we have learned from our SBS studies
for (5.214). We have learned that even simple purely decoherent dynamics ( no dissipation/
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no exchange of kinetic energy) is enough to render classical objectivity (Definition 4.1.1) from
the quantum. Macroscopic systems such as human beings are perpetually scattering smaller
particles such as air molecules, and photons; scattering events that may be modeled by
recoilless-scattering-models such as those afforded by von Neumann-type Hamiltonians(??).
It would seem that classicality at the macroscale arises from the quantum due to the gar-
gantuan quantity of interactions classical objects have with their environments. It would
therefore seem that as classical beings we can never find ourselves in a superposition whilst
living. These are indeed questions for physicists to grapple with and beyond the scope of this
dissertation but thought-provoking and not fully out of place. Rather than concluding this
dissertation with a thousand words we shall conclude it with a picture. We present in the
following page an artistic interpretation of quantum to classical transitions as characterized
by SBS theory (Figure 5.1).
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Figure 5.1: An artistic interpretation of quantum to classical transitions as characterized by SBS
theory. The author of this thesis described SBS theory to artist Timothy Martinez (@timbosculpt)
and this beautiful artistic interpretation resulted. The author omits his own interpretation of this
gorgeous work, leaving the reader to insert their own.

https://www.instagram.com/timbosculpt/?hl=en
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Appendix A

Notation

Herein we present some of the notational conventions of the Thesis in order to aid the reader.

• Â:= operator.

• ρ̂:= Density operator (Definition 1.3.2).

• ρ̂dg,t:= See (4.50)

• ρ̂SBS,t:= See (4.51)

• ρ̂PSBS,t := N ρ̂SBS,t

• Tr
{
Â
}

:= Trace of some trace class op-
erator Â. See Definition 1.3.3.

• TrEk

{
Â
}

:= Partial trace of the kth
environmental degrees of freedom. See
Definition 1.4.1.

• S
(
H
)
:= Space of density operators

acting in H .

• H := Hilbert Space.

• HS:= Hilbert Space of the system.

• HEk := Hilbert Space of kth Environ-
ment.

• Ĥ:= Hamiltonian.

• Ĥint:= Interaction Hamiltonian.

•
∣∣∣ψ〉 := Vector in some Hilbert Space.

• Ût := Unitary operator.

• Ĥ0 := −∑
k

1
2mk

∂2
xk

• Spec
{
Â
}

:= Spectrum of an operator
Â. See Definition 1.3.1.

• E
(
ρ̂
)
: Quantum map. See Definition

2.1.1.

• M̂ := Krauss operators 1.75.

•
∥∥∥Â∥∥∥

1
:= Tr

{√
Â†Â

}

• F
(
ρ̂, σ̂

)
:=
∥∥∥√ρ̂

√
σ̂
∥∥∥2

1

• POVM and PVM:= Projective opera-
tor valued measure and projector val-
ued measure respectively. See 2.2.3 a
discussion.

• pE:= Shorthand for minPOVM pE
{
{pi, ρ̂i}Ni=1, {M̂l

}N
l=1

}
:=

minPOVM
{

1 −∑N
i=1 piTr

{
M̂iρ̂iM̂

†
i

}}
.

• QSD:= Quantum state discrimination.
See the intro to Chapter 3.

• Dk
s,t:= See (4.69).

2
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Appendix B

Gap in Corollary 1 of [41]

Let
{
Êl

}
l

be a POVM. The operators Êl act over some unspecified Hilbert space. Indeed,∑
l Êl = I, ∥Êl∥ ≤ 1 and Êl are positive operators that may be written as Êl = M̂†

lM̂l where
M̂l are bounded operators. Now, let ρ̂ be a density operator acting over the same Hilbert
space as the POVM

{
Êl

}
l
. A question arises regarding the positive semidefiniteness of the

operator ρ̂ − M̂lρ̂M̂†
l .

Claim B.0.1 (Non positivity of a particular operator)

ρ̂ − M̂lρ̂M̂†
l is not positive semidefinite in general

Proof. Counter example.

Consider the 2 dimensional case where ρ̂ =
(

1 − δ 0
0 δ

)
(0 ≤ δ ≤ 1) and we have a POVM

characterized by the operator M̂0 = a

(
0.5 0.5
0.5 0.5

)
(a < 1) which is a scaled projector. The

PVOM in question is {
M̂†

0M̂0, I − M̂†
0M̂0

}
. (B.1)

Let us take a look at the operator

ρ̂ − M̂0ρ̂M̂0 (B.2)

Expanding things out this looks as follows; in matrix notation.

ρ̂ − M̂0ρ̂M̂0 =
(

1 − δ 0
0 δ

)
− a2

4

(
1 1
1 1

)
=
(

1 − δ − a2

4 −a2

4
−a2

4 δ − a2

4

)
. (B.3)

For this operator to be positive semidefinite we require that
〈
ϕ
∣∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣∣ϕ〉 ≥ 0

hold for all
∣∣∣ϕ〉 in the Hilbert space in question. Let us use the unit vector ẽ2 = (0, 1)t. In
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this case 〈
ẽ
∣∣∣{ρ̂ − M̂0ρ̂M̂0

}∣∣∣ẽ〉 = δ − a2

4 (B.4)

But notice that if δ < a2

4 , which is a viable possibility, then we do not have positive
definiteness for ρ̂ − M̂0ρ̂M̂0.

That is it for the counter-example. Notice that in the case where a = 1, M̂0 is a projec-
tor, and even then we do not have positive definiteness for ρ̂ − M̂0ρ̂M̂0 in general since this
breaks down for δ < 1

4 .

Now, in the paper [41] the authors provide a proof for equation (5) on page 2 of said paper.
This proof involves the computation of a trace distance of the form

∥∥∥ρ̂ − P̂ρ̂P̂∥1 (where P̂
is a projector) ; see page (1) of the appendix of the same paper and look at the sentence
preceding equation (4) of page one of this appendix. There the authors implicitly argue that∥∥∥ρ̂ − P̂ρ̂P̂∥1 = Tr

{
ρ̂(I − P̂)

}
in general. This, however, is only true if ρ̂ − P̂ρ̂P̂ ≥ 0, and

this in turn is true only when P̂ commutes with ρ̂. It looks like, tacitly, they are assuming
that the PVMS, amongst other assumptions, have the special property that ( now I use
their notation) the P̂i projector commute with the ρ̂i terms of the mixture ∑i piρ̂i where
P̂i is an element of a POVM used to discriminate the mixture ∑i piρ̂. This assumption
however need not in general be true and the bound by Knill and Barnum [28] does not
assume commutativity for their result that bounds the trace

Tr
{∑

i

piρ̂ −
∑
i

M̂iρ̂M̂†
i

}
(B.5)

to hold when minimizing over appropriate POVM,
{
M̂i

}
i
, schemes and neither do they

assume that we discriminate with projectors, their result uses the objective function which
minimizes over all POVM. This means that the assumption that P̂i commutes with ρ̂i makes
the minimization calculated in [41] an upper bound to the one proven by Knill and Barnum
[28]. Unfortunately starting from ∥ρ̂i − P̂iρ̂iP̂i∥1 and bounding such an object by fidelities
is significantly harder.
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