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Introduction

Given a graph G with vertex set V (G) = {v1, v2, v3, ..., vn}. The distance de-
noted, d(vi, vj), is the length of the shortest path between the two vertices vi and
vj . The diameter, denoted by diam(G), is the greatest distance between any
two vertices in a graph. A radio-labeling is a function f : V (G) −→ {0, 1, 2, 3, ...}
satisfying the condition:

| f(vi)− f(vj) |≥ diam(G)− d(vi, vj) + 1 (1)

Each vertex can be considered a radio station in the vicinity of a city G and we
assign each station a channel number that satisfies the inequality (1). Therefore,
f(vi) is sometimes referred to as the channel for vi. In addition, the span of f
is defined as maxu,v∈V (G) {| f(u)− f(v) |}. In other words, it is the difference
between the highest and the lowest channel assignment. The radio number of
a graph G, denoted by rn(G), is defined as the minimum span of all possible
radio labeling of the graph.

Finding the pattern for Pn when n is even

We want to develop a pattern to determine the order in which we assign channels
to the vertices in a path graph Pn, so that we can obtain a radio labeling for
Pn.

Figure 1: A labeling of the vertices for P8.

Let V(Pn)= { v1, v2, v3, v4,..., vn } oriented as in the figure above, so that we
number the vertices form left to right. Now we are going to rewrite V (Pn) =
{xi | i ∈ {1, 2, 3, ..., n}}, so that i will represent the order in which we assign the
channel number to the given vertex. Therefore, for our labeling f : V (G) −→
{0, 1, 2, ...} we have the following: ∀i ∈ N, f(xi) < f(xi+1). In addition, the
lowest channel number will always be 0 in order to find the minimum span, by
just looking at f(xn), and we will always add to the channel number the lowest
possible amount (i.e., f(xi+1) = f(xi) + diam(G) − d(xi, xj) + 1) to satisfy
the inequality, (1), for radio-labeling. For the even path graphs we start with
f(x1) = 0. Thus, for all even paths, we found a pattern. First, we start with the
center vertex, vn

2
(i.e., let x1 = vn

2
). Then we move to the right most vertex in

the path, vn (i.e., let x2 = vn). Next we label the vertex right before the middle
vertex (vn

2
), vn

2 −1. Afterwards, we move to the vertex right before the right
most vertex, vn−1. The order continues as the following: vn

2 −2, vn−2, vn
2 −3,

vn−3,..., until all the vertices are labeled.
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So we came up with the formulas:

xi =

{
vn

2 −k, if i = 2k + 1

vn−(k−1), if i = 2k

=

{
vn

2 − i−1
2
, if i is odd

vn−( i
2−1), if i is even

=

{
vn+1

2 − i
2
, if i is odd

vn+1− i
2
, if i is even

When assigning the channel we always start with f(x1) = 0 and we add the
smallest amount possible to satisfy the inequality (1). We came up with the
following formulas to find the channel number and the span of our labeling f:

f(xi) =

{
(n(i−1)

2 )− (n−1
2 ), if i is odd

(n(i−1)
2 )− (n2 − 1), if i is even

=

{
(n2 i)− n+ ( 12 ), if i is odd

(n2 i)− n+ 1, if i is even

Therefore, the span is:

f(xn) =
n

2
(n)− n+ 1

=
n2

2
− n+ 1

Figures 2-6 are examples of the pattern we found for even paths P2, P4, ..., P10.

Figure 2: A radio-labeling of P2

Figure 3: A radio-labeling of P4

Figure 4: A radio-labeling of P6

Figure 5: A radio-labeling of P8

Figure 6: A radio-labeling of P10
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Proof that the pattern for even paths is a radio-
labeling

Now we will need to show that the labeling pattern we found for even paths is
a radio-labeling.
Recall that the pattern we found is:

f(xi) =

{
(n2 i)− n+ ( 12 ), if i is odd

(n2 i)− n+ 1, if i is even

where

=

{
vn+1

2 − i
2
, if i is odd

vn+1− i
2
, if i is even

Using these formulas we can prove that the pattern is in-fact a radio labeling

< Proof >
NTS: ∀i, j ∈ {1, 2, 3, ..., n}, i ̸= j, | f(xi)− f(xj) |≥ diam(Pn)− d(xi, xj) + 1

Note 1: diam(Pn)− d(xi, xj) + 1 = (n− 1)− d(xi, xj) + 1 = n− d(xi, xj)
Since ∀ n ∈ N, diam(Pn) = n− 1

Case 1: i and j are both even
⇒ ∃k, q ∈ N ∋ i = 2k and j = 2q, k, q ∈ N
| f(xi)− f(xj) |=| [ (i−1)n

2 − n−2
2 ]− [ (j−1)n

2 − n−2
2 ] |

=| in−n−n+2
2 + −jn+n+n−2

2 |
=| in−jn

2 |=| (i−j)n
2 |≥ n− d(xi, xj)

because | i− j |> 1 ⇒ | i− j | ≥ 2 (since i, j are both even)

⇒| n(i−j)
2 |= n

2 | i− j |≥ (n2 )(2) = n > n− 1 ≥ n− d(xi, xj)
(since d(xi, xj) ≥ 1 ⇒ −d(xi, xj) ≤ −1 ⇒ n− d(xi, xj) ≤ n− 1)

| f(xi)− f(xj) |=| n(i−j)
2 |≥ n− d(xi, xj)

Case 2: i and j are both odd
⇒ ∃k, q ∈ N s.t. i = 2k + 1 and j = 2q + 1

| f(xi)− f(xj) |=| [ (i−1)n
2 − n−1

2 ]− [ (j−1)n
2 − n−1

2 ] |
=| in−n−n+1

2 + −jn+n+n−1
2 |

=| in−jn
2 |=| (i−j)n

2 |≥ n− d(xi, xj)
⇒| i− j |≥ 2(since i, j are both odd)

⇒| n(i−j)
2 |= n

2 | i− j |≥ (n2 )(2) = n > n− 1 ≥ n− d(xi, xj)
(since d(xi, xj) ≥ 1 ⇒ −d(xi, xj) ≤ −1 → n− d(xi, xj) ≤ n− 1)

| f(xi)− f(xj) |=| n(i−j)
2 |≥ n− d(xi, xj)
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Case 3: i and j are of different parity
Without loss of generality say i is even and j is odd.

Note 2: i = 2k ⇒ xi = vn−(k−1) and j = 2q + 1 ⇒ xj = vn
2 −q

⇒ n− d(xi, xj) = n− d(vn−( i
2 )+1, vn−j+1

2
) = n− ((n− ( i

2 ) + 1)− (n−j+1
2 ))

= n− ([n− (k − 1)]− [n2 − q]) = n− n+ k − 1 + n
2 − q = n

2 + k − q − 1

| f(xi)− f(xj) |=| [ (i−1)n
2 − n−2

2 ]− [ (j−1)n
2 − n−1

2 ] |
=| in−n−n+2

2 + −jn+n+n−1
2 |

=| in−jn+1
2 |=| (i−j)n+1

2 |≥ (i− j)

Case 3.1: i > j
⇒| i− j |= i− j ≥ 1

Case 3.1.1: i− j = 1

| n(1)+1
2 |≥ n

2 = n− d(xi, xj)

(Since n
2 + k − q − 1 = n

2 + 1 + q − q − 1 = n
2 (Since i− j = 1

⇒ 2k− (2q+1) = 1 ⇒ 2k−2q−1 = 1 ⇒ 2k−2q = 2 ⇒ k−q = 1 ⇒ k = 1+q))
⇒| n+1

2 |≥ n− d(xi, xj)

Case 3.1.2: i− j ̸= 1
⇒ i− j > 1 ⇒| i− j |≥ 2

⇒| n(i−j)+1
2 |≥| n(2)+1

2 |=| 2n+1
2 |=| n+ 1

2 |> n− 1 ≥ n− d(xi, xj)

Case 3.2: i < j
⇒ i− j < 0 ⇒| i− j |≥ 1

Case 3.2.1: i− j = −1

| n(−1)+1
2 |=| 1−n

2 |=| n−1
2 |≥ n−2

2 = n− d(xi, xj)

(Since n
2 + k − q − 1 = n

2 + k − k − 1 = n−2
2 (Since i− j = −1

⇒ 2k−(2q+1) = −1 ⇒ 2k−2q−1 = −1 ⇒ 2k−2q = 0 ⇒ k−q = 0 ⇒ k = q))
⇒| n−1

2 |≥ n− d(xi, xj)

Case 3.2.2 i− j ̸= −1
| i− j |≥ 2 ⇒ i− j ≤ −2 ⇒ j − i ≥ 2

| n(i−j)+1
2 |=| −n(j−i)+1

2 |=| n(j−i)−1
2 |≥| n(2)−1

2 |=| n− 1
2 |

= n− 1
2 ≥ n− 1 ≥ n− d(xi, xj) ⇒| n− 1

2 |≥ n− d(xi, xj)

4



Finding the pattern for Pn when n is odd

Figure 7: A labeling of the vertices for P7.

Let V(Pn)= { v1, v2, v3, v4,..., vn } oriented as in the figure above, so that we
number the vertices from left to right. Now we are going to rewrite V (G) = {xi |
i ∈ {1, 2, ..., n}}, so that i will represent the order in which we assign the channel
number to the given vertex. Therefore, for our labeling f : V (G) −→ {0, 1, 2, ...}
we have the following: ∀i ∈ N f(xi) < f(xi+1). In addition the lowest channel
number will always be 0 and we will always add to the channel number to lowest
possible amount (i.e., f(xi+1) = f(xi) + diam(G)− d(xi, xj) + 1) to satisfy the
inequality (1), for radio labeling. For the path graph of odd path, we start with
f(x1) = 0. Thus, we found a pattern for all odd paths. First, we start with
the center vertex, vn+1

2
(i.e., let x1 = vn+1

2
). Then we move to the right most

vertex in the path, vn (i.e., let x2 = vn). Next, we label the first vertex v1.
Afterwards, we move to the vertex after the center one, vn+1

2 +1. Then the order

continues as follows: v2, vn+1
2 +2, v3, vn+1

2 +3,..., until all the vertices are labeled.

We came up with the formulas:

x1 = vn+1
2

x2 = vn

for i > 2 :

xi =

{
vk, if i = 2k + 1

vn+1
2 +(k−1), if i = 2k

=

{
v i−1

2
, if i is odd

vn+1
2 +( i

2−1), if i is even

=

{
v i−1

2
, if i is odd

vn+i−1
2

, if i is even

Now we noticed when assigning the channel numbers we had to jump f(x4)
by one every time (Since | f(x2)- f(x4) | ≥ diam(Pn) - d(x2, x4) + 1 ⇒ |
n+1
2 − (n+ 1) | = | −n−1

2 |=| n+1
2 |≥ n+3

2 thus we arrive at a contradiction and
we must add 1 to the channel number to satisfy the inequality).
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Because of this, we have the following formulas for finding the channel
numbers for odd paths Pn and the span of our labeling:

f(x1) = 0

f(x2) =
n+ 1

2

f(x3) =
n+ 3

2
f(x4) = n+ 1 + 1

for i > 4,

f(xi) =

{
(n(i−2)+5

2 ), if i is odd

(n(i−2)+4
2 ), if i is even

Therefore, the span is:

f(xn) =
n(n− 2) + 5

2
( since n is odd.)

=
n2 − 2n+ 5

2

=
(n− 1)2

2
+ 2

Figures 8-11 are examples of the pattern we found for odd paths P3, P5, ..., P9.

Figure 8: A radio-labeling of P3

Figure 9: A radio-labeling of P5

Figure 10: A radio-labeling of P7

Figure 11: A radio-labeling of P9
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Proof That the Pattern for an Odd Path is a
Radio-Labeling

Now we need to show that the labeling pattern we found for odd paths is a radio
labeling. The formulas we found are as follows:

f(xi) =



0 if i = 1
n+1
2 if i = 2

n+3
2 if i = 3

n+ 2 if i = 4
n(i−2)+5

2 if i is odd and i > 4
n(i−2)+4

2 if i is even and i > 4

where

xi =


vn+2

2
if i = 1

vn if i = 2

v i−1
2

if i is odd and i > 2
n+1
2 + i

2 − 1 if i is even and i > 2

Proof :

Note: diam(Pn)− d(xi, xj) + 1 = (n− 1)− d(xi, xj) + 1 = n− d(xi, xj)
(since diam(Pn) = n− 1)
NTS: ∀i, j ∈ {1, 2, ..., n}, i¬j, | f(xi)− f(xj) |≥ n− d(xi, xj)

Case 1 i, j ∈ {1, 2, 3, 4}

Case 1.1 {i, j} = {1, 2}
| f(x1)− f(x2) |=| 0− n+1

2 |=| n+1
2 |

| n+1
2 |≥ n+1

2 = n− (n− n+1
2 ) = n− d(vn+1

2
, vn) = n− d(x1, x2)

⇒| f(x1)− f(x2) |≥ n− d(x1, x2)

Case 1.2 {i, j} = {1, 3}
| f(x1)− f(x3) |=| 0− n+3

2 |=| n+3
2 |

| n+3
2 |≥ n+1

2 = n− (n+1
2 − 1) = n− d(vn+1

2
, v1) = n− d(x1, x3)

⇒| f(x1)− f(x3) |≥ n− d(x1, x3)

Case 1.3 {i, j} = {1, 4}
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| f(x1)− f(x4) |=| 0− (n+ 2) |=| n+ 2 |
| n+ 2 |≥ n− 1 = n− (n+1

2 + 1− n+1
2 ) = n− d(vn+1

2
, vn+1

2 +1) = n− d(x1, x4)

⇒| f(x1)− f(x4) |≥ n− d(x1, x4)

Case 1.4 {i, j} = {2, 3}
| f(x2)− f(x3) |=| n+1

2 − n+3
2 |=| − 2

2 |= 1
1 ≥ 1 = n− (n− 1) = n− d(vn, v1) = n− d(x2, x3)

⇒| f(x2)− f(x3) |≥ n− d(x2, x3)

Case 1.5 {i, j} = {2, 4}
| f(x2)− f(x4) |=| n+1

2 − (n+ 2) |=| −n−3
2 |=| n+3

2 |
| n+3

2 |≥ n+3
2 = n− (n− (n+1

2 + 1)) = n− d(vn, vn+1
2 +1) = n− d(x2, x4)

⇒| f(x2)− f(x4) |≥ n− d(x2, x4)

Case 1.6 {i, j} = {3, 4}
| f(x3)− f(x4) |=| n+3

2 − (n+ 2) |=| −n−1
2 |=| n+1

2 |
| n+1

2 |≥ n−1
2 = n− (n+1

2 + 1− 1) = n− d(v1, vn+1
2 +1) = n− d(x3, x4)

⇒| f(x3)− f(x4) |≥ n− d(x3, x4)

Case 2 i ∈ {1, 2, 3, 4}, j is odd and j > 4
⇒ j ≥ 5

Case 2.1 i = 1

| f(x1)− f(xj) |=| 0− n(j−2)+5
2 |=| n(j−2)+5

2 |
| n(j−2)+5

2 |≥ n+(j−2)
2

(Since j ≥ 5 and for any positive integer z ≥ 2 nz > n+ z)

⇒| n(j−2)+5
2 |≥ n+j−2

2 = n+1+j+1
2 = n− (n+1

2 − j−1
2 ) = n− d(vn+1

2
, v j−1

2
)

= n− d(x1, xj)

⇒| f(x1)− f(xj) |≥ n− d(x1, xj)

Case 2.2 i = 2

| f(x2)− f(xj) |=| n+1
2 − n(j−2)+5

2 |=| nj−3n+4
2 |

| nj−3n+4
2 |≥ j−1

2
(Since j(n− 1) > 3n− 1 since j ≥ 5 and n ≥ 3 ⇒ nj − j ≥ 3n− 1
⇒ nj − 3n ≥ j − 1 ⇒ n(j − 3) ≥ j − 1)
⇒| nj−3n+4

2 |≥ j−1
2 = n− (n− j−1

2 ) = n− d(vn, v j−1
2
) = n− d(x2, xj)

⇒| f(x2)− f(xj) |≥ n− d(x2, xj)
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Case 2.3 i = 3

| f(x3)− f(xj) |=| n+3
2 − n(j−2)+5

2 |=| nj−3n+2
2 |

| nj−3n+2
2 |=| n(j−3)+2

2 |≥ 2n−(j−3)
2 = 2n−j+3

2 (Since j ≥ 5 ⇒ j − 3 ≥ 2)

⇒| nj−3n+2
2 |≥ 2n−j+3

2 = n− j−1
2 + 1 = n− ( j−1

2 − 1) = n− d(v1, v j−1
2
)

= n− d(x3, xj)

⇒| f(x3)− f(xj) |≥ n− d(x3, xj)

Case 2.4 i = 4

| f(x4)− f(xj) |=| n+ 2− n(j−2)+5
2 |=| nj−4n+1

2 |
| nj−4n+1

2 |=| n(j−4)+1
2 |≥ n+(j−4)

2 = n+j−4
2

(Since j ≥ 5 and for any positive integer z ≥ 2 nz > n+ z)
⇒| nj−4n+1

2 |≥ n+j−4
2 = n−1

2 − 1 + j−1
2 = n− (n+1

2 + 1− j−1
2 )

= n− d(vn+1
2 +1, v j−1

2
) = n− d(x4, xj)

⇒| f(x4)− f(xj) |≥ n− d(x4, xj)

Case 3 i ∈ {1, 2, 3, 4}, j is even and j > 4
⇒ j ≥ 6

Case 3.1 i = 1

| f(x1)− f(xj) |=| 0− n(j−2)+4
2 |=| n(j−2)+4

2 |
| n(j−2)+4

2 |≥ 2n−j+2
2 (Since j ≥ 6)

⇒| n(j−2)+4
2 |≥ 2n−j+2

2 = n− j
2 + 1 = n− ((n+1

2 + j−2
2 )− n+1

2 )
= n− d(vn+1

2
, vn+1

2 + j−2
2
) = n− d(x1, xj)

⇒| f(x1)− f(xj) |≥ n− d(x1, xj)

Case 3.2 i = 2

| f(x2)− f(xj) |=| n+1
2 − n(j−2)+4

2 |=| nj−3n+3
2 |

| nj−3n+3
2 |=| n(j−1)+3

2 |≥ n+(j−1)
2 = n−j+1

2 (Since j ≥ 6 ⇒ j − 3 > 0)

⇒| nj−3n+5
2 |≥ n+j−1

2 = n+1
2 + j−2

2 = n−(n−(n+1
2 + j−2

2 )) = n−d(vn, vn+1
2 + j−2

2
)

= n− d(x2, xj)

⇒| f(x2)− f(xj) |≥ n− d(x2, xj)

Case 3.3 i = 3

| f(x3)− f(xj) |=| n+3
2 − n(j−2)+4

2 |=| nj−3n+1
2 |

| nj−3n+1
2 |=| n(j−3)+1

2 |≥ n−(j−3)
3

n−j+3
2 (Since j ≥ 6 ⇒ j − 3 > 0)

⇒| nj−3n+3
2 |≥ n−j+3

2 = n− n+1
2 − j

2 + 1 + 1 = n− (n+1
2 + j−2

2 − 1)
= n− d(v1, vn+1

2 + j−2
2
) = n− d(x3, xj)
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⇒| f(x3)− f(xj) |≥ n− d(x3, xj)

Case 3.4 i = 4

| f(x4)− f(xj) |=| n+ 2− n(j−2)+4
2 |=| nj−4n

2 |
| nj−4n

2 |=| n(j−4)
2 |≥ 2n−(j+4)

2 = 2n−j−4
2 (Since j ≥ 6 ⇒ j − 4 ≥ 2)

⇒| nj−4n+2
2 |≥ 2n−j−4

2 = n− j
2 − 2 = n− (n+1

2 + j−2
2 − n+1

2 − 1)
= n− d(vn+1

2 +1, vn+1
2 + j−2

2
) = n− d(x4, xj)

⇒| f(x4)− f(xj) |≥ n− d(x4, xj)

Case 4 i, j > 4

Case 4.1 i and j are both odd
Without loss of generality, let i > j

| f(xi)− f(xj) |=| n(i−2)+5
2 − n(j−2)+5

2 |=| n(i−j)
2 |

| n(i−j)
2 |≥ 2n+(j−i)

2 (Since i > j, i− j ≥ 2 and j − i < 0)

⇒| n(i−j)
2 |≥ 2n+(j−i)

2 = n− i−1
2 + j−1

2 = n− ( i−1
2 − j−1

2 ) = n− d(v i−1
2
, v j−1

2
)

= n− d(xi, xj)

⇒| f(xi)− f(xj) |≥ n− d(xi, xj)

Case 4.2 i and j are both even
Without loss of generality, let i > j

| f(xi)− f(xj) |=| n(i−2)+4
2 − n(j−2)+4

2 |=| n(i−j)
2 |

| (i−j)
2 |≥ 2n+(j−i)

2 (Since i > j, i− j ≥ 2 and j − i < 0)

⇒| n(i−j)
2 |≥ 2n+(j−i)

2 = n− i−2
2 + j−2

2 = n− (n+1
2 + i−2

2 − n+1
2 − j−2

2 )
= n− d(vn+1

2 + i−2
2
, vn+1

2 + j−2
2
) = n− d(xi, xj)

⇒| f(xi)− f(xj) |≥ n− d(xi, xj)

Case 4.3 i and j are of different parity
Without loss of generality, let i be odd and j be even

| f(xi)− f(xj) |=| n(i−2)+5
2 − n(j−2)+4

2 |=| n(i−j)+1
2 |

| n(i−j)+1
2 |≥ n+(i−j)

2

( Since if i > j ⇒| n(i−j)+1
2 |= n(i−j)+1

2 > n+(j−i)
2 since i− j > 0

and if j > i ⇒| n(i−j)+1
2 |=| −n(j−i)+1

2 |= (j−i)−1
2 ≥ n+(i−j)

2 since i− j < 0)
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⇒| n(j−i)+1
2 |≥ n+(i−j)

2 = 2n−n−1−j+2+i−1
2 = n − (n+1

2 + j−2
2 − i−1

2 ) =
n− d(v i−1

2
, vn+1

2 + j−2
2
) = n− d(xi, xj)

⇒| f(xi)− f(xj) |≥ n− d(xi, xj)

Adding a Vertex

Now we turn our attention to another problem. What happens to the radio-
labeling of a path graph when we add one vertex and one edge to the graph?

Claim: Connecting a vertex xm to any vertex in the graph Pn will result in
a new graph, call it Λ, with a greater span than Pn

(Proof)
Case 1, xm is connected to either end of Pn(that is, either of the two vertices

in Pn with deg = 1) and we allow relabeling of vertices in Λ
For simplicity lets consider only the cases with rn(Pn), the reason being

that if we can prove our claim for Pn with the smallest span then it follows that
our claim will be true for any other radio label of Pn with a greater span than
rn(Pn). When connecting a vertex to either end of a Pn graph with rn(Pn) (here
we direct our attention to a special case were Pn has its minimum span), and
relabeling the vertices to achieve min span of the new graph, note that it turns
into a Pn+1 graph (still a path), the difference is that the new path graph will
have a different parity and a higher order. Using the patterns for even paths
and odd paths (week one and week two report) we can relabel the new graph
to give us rn(Pn+1). It is clear that for any integer n rn(Pn)<(Pn+1). But
for the sake of formality, we show this below (one must reference the equations
presented for Pn graphs when n is either even or odd in order to make sense of
the following):

Case 1.1, n is even. n ≥4

f(xn)=
n
2 (n)− n+ 1<f(xn+1)=

(n+1)((n+1)−2)+5
2 =n2+4

2 =n2

2 +2
Case 1.2, n is odd. n ≥4

f(xn)=
(n−1)2

2 +2<f(xx+1)=
(n+1)2

2 -n+ 1=n2 + n+ 1
Case 1.3, n = 3.
f(x3)=

3+3
2 =3<f(x4)=

4
2 (4)-4+1=5

Case 1.4, n = 2.
f(x2)=

2
2 (2)− 2 + 1=1<f(x3)=3

Case 1.5, n = 1.
f(x1)=0<f(x2)=1
Case 2, xm is connected to either end of Pn(producing Λ) and relabeling to

all vertices in Pn is restricted.
Now consider the case were we connect a vertex to either end of a Pn graph

and we forbid relabeling of the set of vertices of the new graph. In other words,
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we are trying to show that rn(Pn+1)>rn(Pn) with the restriction that all the
labeling’s of the vertices in Pn remain static when we connect xm to one of
the ends of Pn(as mentioned earlier, connecting xm to an end of Pn creates
a Pn+1 graph). Since case 1 shows that the rn(Pn+1)>rn(Pn), with rn(Pn+1)
being the minimum span possible for a Pn+1 graph, it suffices to note that
f(xm)≥rn(Pn+1)>rn(Pn)(f(V):The set of integers) since the restrictions placed
on Pn+1 in this case can only make f(xm) greater if not equal to Pn+1

Case 3, xm is connected to any vertex in the graph Pn with exception of its
two end vertices(the two vertices whose distance from either one to the other
gives the diameter), and relabeling of the ne graph Λ is aloud.

Now lets consider the case were we connect xm to the graph Pn anywhere
in the mid section of the graph and use relabeling of the new graph, call this
graph Λ to attain its minimum span. rn(Λ) must be greater than rn(Pn), if the
latter is true then when we restrict relabeling of Λ we will be restricted to a
new minimum span, namely minf(xm) which is greater than or equal to the
span of rn(Λ) in the case were the latter is obtained by allowing relabeling(Same
argument as case two). We need to refer to a theorem from ”The Radio Numbers
Of All Graphs Of Order n And Diameter n− 2 by K.Benson, M.Porter, and
M.Tomava, namely that the min span of a graph that consist of connecting
a vertex xm to a vertex of Pn, (recall that we named such a graph Λ), is
given by the following equation which is presented posthumous to a necessary
definition.(Note that the following equation is derived from the case were 1 and
not zero is the smallest numerical value that can be assigned to a vertex)

Defenition 1. Let (n, s) ϵZ where n ≥ 4 and n− 2 ≥ s ≥ 2. The spire
graph Sn,s is the graph with the vertices (v1,...,vn), and edges (vi, vi+1—i =
1, 2..., n− 2) together with the edge (vs,vn). The vertex vn is called the spire.
Without loss of generality we always assume that ⌊n

2 ⌋ ≥ s
Now follows the theorem.
THEOREM 1.
(Radio Number of Sn,s). Let Sn,s be a spire graph, where ⌊n

2 ⌋ ≥ s ≥2.
Then,

rn(Sn,s) =


2k2 − 4k + 2s+ 3, if n = 2k, 2 ≤ s ≤ k − 2

2k2 − 2k, if n = 2k, s = k − 1

2k2 − 2k + 1, if n = 2k, s = k

2k2 − 2k + 2s, if n = 2k + 1

The above equation gives the minimum span of any graph that consist of a
vertex xm connected to a vertex in the mid section of Pn. Therefore all we need
to do is show that rn(Pn)<rn(Sn+1,s).

Case 3.1, n=2k+1
Case 3.1.1 n > 4 (k > 1), and k − 2 ≥ s ≥ 2

rn(Pn)=
2k2

2 +2=2k2+2, let t = k+1 and p = 2t, thus we have rn(Sp,s)=2t2−
4t + 2s + 3, note that the minimum value for s is 2, if the inequality we are
trying to prove holds for the case were s is at its minimum then it will hold for

12



all other s. Thus, rn(Sp,2)=2k2 + 3. Note that 2k2 + 3 > 2k2 + 2, or in other
words rn(Pn) < rn(Sp,s)=rn(Sn+1,s).

Case 3.1.2 n>4(k > 1), and s = k − 1

rn(Pn)=
2k2

2 +2=2k2 + 2, let t = k + 1 and p = 2t, thus we have rn(Sp,s)=
2k2 + 2k. It is easy to see that 2k2 + 2<2k2 = 2k since k > 1, therefore
rn(Pn)<rn(Sp,s)=rn(Sn+1,s).

Case 3.1.3, n > 4(k > 1), and s = k

rn(Pn)=
2k2

2 +2=2k2+2, let t = k+1 and p = 2t, thus we have rn(Sp,s)=2(k2+
2k + 1) − 2(k + 1) + 1=2k2 + 2k + 1. Once again it is easy to see that
2k2 + 2<2k2 + 2k + 1 since k > 1, therefore rn(Pn)<rn(Sp,s)=rn(Sn+1,s)

Case 3.1.4, n = 3, and k − 2 ≥ s ≥ 2
rn(Pn) = 3, rn(S4,s)=2s+3. since the minimum value of s is 2 it suffices to

prove that the inequality holds for such case. Indeed 3 < 5, therefore rn(Pn) =
3<5=rn(S4,s)=rn(Sn+1,s).

Case 3.1.5, n = 3, and s = k − 1
rn(Pn) = 3, rn(S4,s)=4. Obviously rn(Pn) = 3<4=rn(S4,s)=rn(Sn+1,s).
Case 3.1.6, n = 3, and s = k
rn(Pn) = 3, rn(S4,s)=5. Obviously rn(Pn) = 3<5=rn(S4,s)=rn(Sn+1,s).
Case 3.1.7, n = 1, and k − 2 ≥ s ≥ 2
rn(Pn) = 0,rn(S2,s)=2s+ 1. since the minimum value of s is 2 it suffices to

prove that the inequality holds for such case. Indeed 0 < 3, therefore rn(Pn) =
0<3=rn(S2,s)=rn(Sn+1,s).

Case 3.1.8, n = 1, and s = k − 1
rn(Pn) = 0,rn(S2,s)=0. Here both radio numbers are equal but remember

that the theorem we presented earlier uses 1 instead of zero as the smallest
numerical value that can be assigned to a vertex, so in reality rn(S2,s)=1. Thus
rn(S2,s)=rn(Sn+1,s)>rn(Pn). Concourse the latter revelation implies that there
should be a 1 added to all the rn(Sp,s)’s in the earlier cases, but we obviously
proved the inequality that we are interested in without it and therefore the
bringing this curiosity to our attention now only strengthens our hypothesis.

Case 3.1.9, n = 1, and s = k
rn(Pn) = 0,rn(S2,s)=1. Of course 1>0, thus rn(Pn) = 0<1=rn(S2,s)=rn(Sn+1,s).
Case 3.2, n=2k (even)

rn(Pn)=
n2

2 -n+1=2k2− 2k+1, rn(Sn+1,s)=rn(S2k+1,s), now let 2k+1 = h.
rn(Sh,s)=2k2 − 2k + 2s. By theorem 1, ⌊n

2 ⌋ ≥ s ≥2. Since the minimum value
for s is 2 it suffices to show that the inequality of interest holds for such case.
Thus rn(Sh,s)=2k2 − 2k + 2s=2k2 − 2k + 4>2k2 − 2k + 1=rn(Pn), or in other
words rn(Sn+1,s)>rn(Pn).

Thus, rnPn<rnSn+1,s and therefore any other labeling to graphs of the form
Λ will be greater than or equal to rnSn,s.

We now conclude that adding a new vertex to a graph of the form Pn by
connecting the new vertex to an arbitrary vertex in Pn will result in a graph
with a greater span.
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Fifth Power Paths

Now we want to look at the radio-number for fifth power path graphs.
We denote a path with n vertices by Pn, where V (Pn) = {v1, v2, . . . , vn} and
E(Pn) = {vivi+1 : i = 1, 2, . . . , n − 1}. The rth power of a path graph Pn,
denoted by P r

n , is the path graph constructed from Pn by adding edges between
vertices of distance r or less apart in Pn. Hence, V (P 5

n) = V (Pn) and E(P 5
n) =

E(Pn) ∪ {vivi+2 : i = 1, 2, . . . , n − 2} ∪ {vivi+3 : i = 1, 2, . . . , n − 3} ∪ {vivi+4 :
i = 1, 2, . . . , n− 4}∪ {vivi+5 : i = 1, 2, . . . , n− 5}. The diameter of P 5

n is ⌈n−1
5 ⌉.

Finding the Lower Bound for rn(P 5
n)

Proposition 1 For any u, v ∈ V (P 5
n), we have:

d(u, v) =

⌈
dPn(u, v)

5

⌉
.

The center of the path graph P 5
n is defined as the ”middle” vertex of P 5

n . An
odd path P2m+1 has only one center vm+1, while an even path P2m has two
centers vm and vm+1. For each vertex u ∈ V (Pn), the level of u, denoted by
L(u), is the smallest distance in Pn from u to a center of Pn. For instance, if
n = 2m+ 1, then L(v1) = m and L(vm+1) = 0. Denote the levels of a sequence
of vertices A by L(A).
If n = 2m+ 1, then

L(v1, v2, . . . , v2m+1) = (m,m− 1, . . . , 3, 2, 1, 0, 1, 2, 3, . . . ,m− 1,m).

If n = 2m, then

L(v1, v2, . . . , v2m) = (m− 1,m− 2, . . . , 3, 2, 1, 0, 0, 1, 2, 3, . . . ,m− 2,m− 1).

Set the left-vertices and right-vertices as follows:
If n = 2m+ 1, then the left-vertices and right-vertices, respectively are

{v1, v2, . . . , vm, vm+1} and {vm+1, vm+2, . . . , v2m, v2m+1}.

The center vm+1 is both a left-vertex and a right-vertex on an odd path.
If n = 2m, then the left-vertices and right-vertices, respectively are

{v1, v2, . . . , vm} and {vm+1, vm+2, . . . , v2m}.

If two vertices are both right (or left)-vertices, then we say that they are on the
same side; otherwise, they are on the opposite sides. Observe,

Lemma 1 If n is odd, then for any u, v ∈ V P 5
n , we have :
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d(u, v) =



⌈
L(u)+L(v)

5

⌉
if u and v are on opposite sides

⌈
|L(u)−L(v)|

5

⌉
if u and v are on the same sides

If n is even, then for any u, v ∈ V P 5
n , we have :

d(u, v) =



⌈
L(u)+L(v)+1

5

⌉
if u and v are on opposite sides

⌈
|L(u)−L(v)|

5

⌉
if u and v are on the same sides

Lemma 2 Let P 5
n be a fifth power path on n vertices where n ≥ 7 and let k =

⌈n−1
5 ⌉ i.e. k = diam(P 5

n).

If n is odd then rn(P 5
n) ≥



5
2k

2 + 1, if n ≡ 1(mod10)
5
2k

2 + 1
2 , if n ≡ 3(mod10)

5
2k

2 + 3
2 , if n ≡ 5(mod10)

5
2k

2, if n ≡ 7(mod10)
5
2k

2 + 1, if n ≡ 9(mod10)

Proof Let f be a radio-labeling for P 5
n . Re-arrange V (P 5

n) = {x1, x2, . . . , xn}
with 0 = f(x1) < f(x2) < f(x3) < · · · < f(xn). Note that f(xn) is the span of
f .
By definition, f(xi+1)− f(xi) ≥ k+1− d(xi, xi+1) for 1 ≤ i ≤ n− 1. Summing
up these n− 1 inequalities, we have the following:

f(xn) ≥ (n− 1)(k + 1)−
n−1∑
i=1

d(xi, xi+1). (2)

To consider the minimal span of all radio labelings of P 5
n when n is odd, it

suffices to maximize the sum
∑n−1

i=1 d(xi, xi+1) of P
5
n to minimize the difference

from the inequality (1), therefore by lemma 1:

n−1∑
i=1

d(xi, xx+1) ≤
n−1∑
i=1

⌈
L(xi) + L(xi+1)

5

⌉
.

From the inequality above we get:

1) For each i, the equality for d(xi, xi+1) ≤ ⌈L(xi)+L(xi+1)
5 ⌉ holds only when xi

and xi+1 are on the opposite sides, unless one of them is a center; and

15



2) In the summation
∑n−1

i=1 d(xi, xi+1) ≤
∑n−1

i=1 ⌈
L(xi)+L(xi+1)

5 ⌉, each vertex of
P 5
n occurs exactly twice, except xi and xi+1 for which each only occurs once.

Now, consider the following. By direct calculation we have:

⌈
L(u) + L(v)

5

⌉
=



L(u)+L(v)+4
5 − 4

5 , if L(u) + L(v) ≡ 0 (mod 5)
L(u)+L(v)+4

5 , if L(u) + L(v) ≡ 1 (mod 5)
L(u)+L(v)+4

5 − 1
5 , if L(u) + L(v) ≡ 2 (mod 5)

L(u)+L(v)+4
5 − 2

5 , if L(u) + L(v) ≡ 3 (mod 5)
L(u)+L(v)+4

5 − 3
5 , if L(u) + L(v) ≡ 4 (mod 5)

Therefore, ⌈
L(xi) + L(xi+1)

5

⌉
≤ L(xi) + L(xi+1) + 4

5
.

and the equality holds if L(u) + L(v) ≡ 1(mod5). By observation, there exists
at most n − 5 of the i’s such that d(xi, xi+1) = (L(xi) + L(xi+1) + 4)/5. Fur-
thermore, this concludes the following:

n−1∑
i=1

d(xi, xi+1) ≤

[
n−1∑
i=1

L(xi) + L(xi+1) + 4

5

]
− 1

5
− 1

5
− 1

5
− 1

5

=
1

5

[(
2

n∑
i=1

L(xi)

)
− L(x1)− L(xn)

]
+

4

5
(n− 1)− 4

5

≤ 2

5

[
2

(
1 + 2 + · · ·+

(
n− 1

2

))]
− 1

5
+

4

5
(n− 1)− 4

5

(
note L(xi) + L(xn) ≥ 1

)
=

2

5

[(
n− 1

2

)(
1 +

n− 1

2

)]
+

4

5
n− 9

5

=
1

5

(
n− 1 +

n2

2
− n+

1

2

)
+

4

5
n− 9

5

=
n2

2 − 1
2

5
+

4

5
n− 9

5

=
n2

10
+

4

5
n− 19

10

Hence, when n is odd, n ≥ 7,

rn(P 5
n) ≥ (n− 1)(k + 1)− (n

2

10 + 4
5n− 19

10 )
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Now we must consider 5 cases according to n (mod 10) when n is odd. By direct
calculation and considering that rn(P 5

n) is an integer, we have:

Case 1 :

((5k + 1)− 1)(k + 1)−

(
(5k + 1)2

10
+

4

5
(5k + 1)− 19

10

)

= 5k2 + 5k −

(
(25k2 + 10k + 1)

10
+ 4k +

4

5
− 19

10

)

=
5

2
k2 − 1

10
− 4

5
+

19

10

=

⌈
5

2
k2 + 1

⌉
=

5

2
k2 + 1, when k is even.

Case 2 :

((5k − 2)− 1)(k + 1)−

(
(5k − 2)2

10
+

4

5
(5k − 2)− 19

10

)

= 5k2 + 2k − 3−

(
(25k2 − 20k + 4)

10
+ 4k − 8

5
− 19

10

)

=
5

2
k2 − 4

10
− 30

10
+

16

10
+

19

10

=

⌈
5

2
k2 +

1

10

⌉
=

5

2
k2 +

1

2
, when k is odd.
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Case 3 :

((5k)− 1)(k + 1)−

(
(5k)2

10
+

4

5
(5k)− 19

10

)

= 5k2 + 4k − 1−

(
(25k2)

10
+ 4k − 19

10

)

=
5

2
k2 − 1 +

19

10

=

⌈
5

2
k2 +

9

10

⌉
=

5

2
k2 +

3

2
, when k is odd.

Case 4 :

((5k − 3)− 1)(k + 1)−

(
(5k − 3)2

10
+

4

5
(5k − 3)− 19

10

)

= 5k2 + k − 4−

(
(25k2 − 30k + 9)

10
+ 4k − 12

5
− 19

10

)

=
5

2
k2 − 4− 4

10
+

12

5
+

19

10

=

⌈
5

2
k2 − 1

10

⌉
=

5

2
k2, when k is even.

Case 5 :

((5k − 1)− 1)(k + 1)−

(
(5k − 1)2

10
+

4

5
(5k − 1)− 19

10

)

= 5k2 + 3k − 2−

(
(25k2 − 10k + 1)

10
+ 4k − 4

5
− 19

10

)

=
5

2
k2 − 20

10
− 1

10
+

4

5
+

19

10

=

⌈
5

2
k2 +

3

5

⌉
=

5

2
k2 + 1, when k is even.

Therefore, we reach the following:

rn(P 5
n) ≥



⌈ 5
2k

2 + 1⌉ = 5
2k

2 + 1, if n ≡ 1 (mod 10) (i.e., n=5k+1 is even);

⌈ 5
2k

2 + 1
10⌉ =

5
2k

2 + 1
2 , if n ≡ 3 (mod 10) (i.e., n=5k-2 is odd);

⌈ 5
2k

2 + 9
10⌉ =

5
2k

2 + 3
2 , if n ≡ 5 (mod 10) (i.e., n=5k is odd);

⌈ 5
2k

2 − 3
5⌉ =

5
2k

2, if n ≡ 7 (mod 10) (i.e., n=5k-3 is even);

⌈ 5
2k

2 + 3
5⌉ =

5
2k

2 + 1, if n ≡ 9 (mod 10) (i.e., n=5k-1 is even).
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Now we will look at P 5
n when n is even to establish the lower bound of rn(P 5

n).
Lemma 3 Let P 5

n be a fifth power path on n vertices where n ≥ 7 and let k =
⌈n−1

5 ⌉ i.e. k = diam(P 5
n).

If n is even then rn(P 5
n) ≥



5
2k

2 + 1, if n ≡ 0(mod10)
5
2k

2 − 1
2 , if n ≡ 2(mod10)

5
2k

2 + 1
2 , if n ≡ 4(mod10)

5
2k

2 + 3
2 , if n ≡ 6(mod10)

5
2k

2, if n ≡ 8(mod10)

Proof
To consider the minimal span of all radio labelings of P 5

n when n is even, the
situation is very similar to that of the fifth power of odd paths. By lemma 1:

n−1∑
i=1

d(xi, xi+1) ≤
n−1∑
i=1

⌈
L(xi) + L(xi+1) + 1

5

⌉
.

From the inequality above we get:

1) For each i, the equality for d(xi, xi+1) ≤ ⌈L(xi)+L(xi+1+1)
5 ⌉ holds only when

xi and xi+1 are on the opposite sides, unless one of them is a center; and

2) In the summation
∑n−1

i=1 d(xi, xi+1) ≤
∑n−1

i=1 ⌈
L(xi)+L(xi+1+1)

5 ⌉, each vertex
of P 5

n occurs exactly twice, except xi and xi+1 for which each only occurs once.
Now, consider the following. By direct calculation we have:

⌈
L(u) + L(v) + 1

5

⌉
=



L(u)+L(v)+5
5 , if L(u) + L(v) ≡ 0 (mod 5)

L(u)+L(v)+5
5 − 1

5 , if L(u) + L(v) ≡ 1 (mod 5)
L(u)+L(v)+5

5 − 2
5 , if L(u) + L(v) ≡ 2 (mod 5)

L(u)+L(v)+5
5 − 3

5 , if L(u) + L(v) ≡ 3 (mod 5)
L(u)+L(v)+5

5 − 4
5 , if L(u) + L(v) ≡ 4 (mod 5)

Therefore, ⌈
L(xi) + L(xi+1) + 1

5

⌉
≤ L(xi) + L(xi+1) + 5

5
.

and the equality holds when L(u) + L(v) ≡ 0(mod5). By observation, there
exists at most n− 5 of the i’s such that d(xi, xi+1) = (L(xi) + L(xi+1) + 5)/5.
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Furthermore, this concludes the following:

n−1∑
i=1

d(xi, xi+1) ≤

[
n−1∑
i=1

L(xi) + L(xi+1) + 5

5

]
− 1

5
− 1

5
− 1

5
− 1

5

=
1

5

[(
2
n−1∑
i=1

L(xi)

)
− L(x1)− L(xn)

]
+ (n− 1)− 4

5

≤ 2

5

[
2

(
0 + 1 + 2 + · · ·+

(n
2
− 1
))]

+ n− 9

5

(
note L(xi) = L(xn) = 0

)
=

2

5

[(
1 +

(n
2
− 1
))(n

2
− 1

)]
+ n− 9

5

=
n2

10
+

4

5
n− 9

5

Hence when n is even, n ≥ 8

rn(P 5
n) ≥ (n− 1)(k + 1)− (n

2

10 + 4
5n− 9

5 )

Now we must consider 5 cases according to n (mod 10) when n is even. By
direct calculation and considering that rn(P 5

n) is an integer, we have:
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Case 1 :

((5k)− 1)(k + 1)−

(
(5k)2

10
+

4

5
(5k)− 9

5

)

= 5k2 + 4k − 1−

(
(25k2)

10
+ 4k − 9

5

)

=
5

2
k2 − 1 +

9

5

=

⌈
5

2
k2 +

4

5

⌉
=

5

2
k2 + 1, when k is even.

Case 2 :

((5k − 3)− 1)(k + 1)−

(
(5k − 3)2

10
+

4

5
(5k − 3)− 9

5

)

= 5k2 + k − 4−

(
(25k2 − 30k + 9)

10
+ 4k − 12

5
− 9

5

)

=
5

2
k2 − 4− 9

10
+

12

5
+

9

5

=

⌈
5

2
k2 − 7

10

⌉
=

5

2
k2 − 1

2
, when k is odd.

Case 3 :

((5k − 1)− 1)(k + 1)−

(
(5k − 1)2

10
+

4

5
(5k − 1)− 19

10

)

= 5k2 + 3k − 2−

(
(25k2 − 10k + 1)

10
+ 4k − 4

5
− 9

5

)

=
5

2
k2 − 2− 1

10
+

4

5
+

9

5

=

⌈
5

2
k2 +

1

2

⌉
=

5

2
k2 +

1

2
, when k is odd.
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Case 4 :

((5k + 1)− 1)(k + 1)−

(
(5k + 1)2

10
+

4

5
(5k + 1)− 9

5

)

= 5k2 + 5k −

(
(25k2 + 10k + 1)

10
+ 4k +

4

5
− 9

5

)

=
5

2
k2 +

9

10

=

⌈
5

2
k2 +

9

10

⌉
=

5

2
k2 +

3

2
, when k is odd.

Case 5 :

((5k − 2)− 1)(k + 1)−

(
(5k − 2)2

10
+

4

5
(5k − 2)− 9

5

)

= 5k2 + 2k − 3−

(
(25k2 − 20k + 4)

10
+ 4k − 8

5
− 9

5

)

=
5

2
k2 − 3

2

5
− 1

10
+

8

5
+

9

5

=

⌈
5

2
k2
⌉
=

5

2
k2, when k is even.

Therefore, we reach the following:

rn(P 5
n) ≥



⌈ 5
2k

2 + 4
5⌉ =

5
2k

2 + 1, if n ≡ 0 (mod 10) (i.e., n=5k is even);

⌈ 5
2k

2 − 1
2⌉ =

5
2k

2 − 1
2 , if n ≡ 2 (mod 10) (i.e., n=5k-4 is odd);

⌈ 5
2k

2 + 1
2⌉ =

5
2k

2 + 1
2 , if n ≡ 4 (mod 10) (i.e., n=5k-1 is odd);

⌈ 5
2k

2 + 3
2⌉ =

5
2k

2 + 3
2 , if n ≡ 6 (mod 10) (i.e., n=5k+1 is odd);

⌈ 5
2k

2⌉ = 5
2k

2, if n ≡ 8 (mod 10) (i.e., n=5k-2 is even).

Therefore, by combining lemma 2 and lemma 3, we obtained a ”general” lower
bound for rn(P 5

n) :
Lemma 4: Let P 5

n be a fifth power path on n vertices where n ≥ 7 and let k =
⌈n−1

5 ⌉ i.e. k = diam(P 5
n).

rn(P 5
n) ≥



5
2k

2 + 1, if n ≡ 0, 1, 9 (mod 10)
5
2k

2 − 1
2 , if n ≡ 2 (mod 10)

5
2k

2 + 1
2 , if n ≡ 3, 4 (mod 10)

5
2k

2 + 3
2 , if n ≡ 5, 6 (mod 10)

5
2k

2, if n ≡ 7, 8 (mod 10)
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However, some of the cases do not follow the ”general lower-bound” and we
must prove that the lower bound for those cases is actually sharper.

Proof that the Radio Number of P 5
10q+8 Must be

Raised

First, consider the level of a vertex in respect to the graph’s center. The levels
of the path graph P 5

10q+8 show that there are extra vertices with a level value
of 1 that must be placed accordingly to achieve a minimum span. Since a pat-
tern without jumping is conclusively what we’re seeking, the radio number is
restricted to a pattern based on our previous findings of the lower bound, which
gives the sum of levels of two vertices to be congruent to 0, 1, or 2 as our best
cases.
We know that there are n − 1 connections (edges) on a path graph. Therefore
the following must be true:

n− 1 = 10q + 8n− 9 = 10q

Therefore there exists no more than n− 9 = 10q connections for P 5
10q+8.

For our lower bound pattern to P 5
n , we used notation based on whether vertices

are on the ”left” or on the ”right” side of a path graph. Similarly, for the levels
of this graph, we consider the equivalent form of levels. For m = left, and r =
right, we have the following pattern:

m0 < −−−− > r0
m1 < −−−− > r4
m2 < −−−− > r3
m3 < −−−− > r2
m4 < −−−− > r1

In P 5
10q+8, there exists given amounts for each level for each side respectively.

For example, there are at least q + 1 many m0 and r0 in the graph. By adding
these together and subtracting 1, you get the amount of connections between
m0 and r0 in the given pattern. Accordingly, you do this for each level to reach
the following:

2q + 1 connections for m0 < −−−− > r0
2q + 1 connections for m1 < −−−− > r4
2q + 1 connections for m2 < −−−− > r3
2q + 1 connections for m3 < −−−− > r2
2q − 1 connections for m4 < −−−− > r1

With these connections known, then there exists disconnections in the pattern
since we must continue to assign an appropriate radio labeling. By inspection,
there is at least 4 disconnections in P 5

n since the pattern must go from r0 ⇒ m1,
r4 ⇒ m2, r3 ⇒ m3, and r2 ⇒ m4. By using the above conclusions, with enough
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disconnections, the levels of the graph will force the radio number to bump,
allowing a successful pattern to work.

Under these assumptions, we can prove that the lower bound must be bumped
by 1. We’ll use the same method to prove the other remaining cases in the Fall
Quarter of 2012.

Upper Bound and Optimal Radio-labelings for
rn(P 5

n)

By Lemma 4, to establish rn(P 5
n), it suffices to give a radio-labeling that gives

us the desired span. We will use Lemma 5 to show that a given labeling is a
radio-labeling.

Lemma 5
Let P 5

n be a fifth power path graph on n vertices with k = ⌈n−1
5 ⌉ i.e. k =

diam(P 5
n). Let {x1, x2, x3, ..., xn} be a permutation of V (P 5

n) s.t. for any 1≤
i ≤ n− 2:

min {dPn(xi, xi+1), dPn(xi+1, xi+2)}

≤ 5
2k + 1 and max {dPn(xi, xi+1), dPn(xi+1, xi+2)} ≡ 0, 2, or 4(mod 5) if k is

even and the equality above holds. Let f be a function f −→ {0, 1, 2, ...} with
f(x1) = 0 and f(xi+1)− f(xi) = k+ 1− d(xi, xi+1) for all 1 ≤ i ≤ n− 1. Then
f is a radio labeling for P 5

n .

Proposition 1
For any d1 d2 ∈ N we have,

⌈d1 + d2
5

⌉ =


⌈d1

5 ⌉+ ⌈d2

5 ⌉ − 1 if (d1, d2) ≡ (1, 1), (1, 2), (2, 1), (1, 3), (3, 1),

(1, 4), (4, 1), (2, 2), (2, 3), or (3, 2)(mod 5)

⌈d1

5 ⌉+ ⌈d2

5 ⌉ otherwise

⌈d1 − d2
5

⌉ =


⌈d1

5 ⌉ − ⌈d2

5 ⌉+ 1 if (d1, d2) ≡ (0, 1), (0, 2), (0, 3), (0, 4), (2, 1), (3, 1),

(4, 1), (3, 2), (4, 2), or (4, 3)(mod 5)

⌈d1

5 ⌉ − ⌈d2

5 ⌉ otherwise

Proof of Lemma :
Let f be a function satisfying the assumption. It suffices to prove that f(xj)−
f(xi) ≥ k + 1− d(xi, xj) for any j ≥ i+ 2. For i = 1, 2, ..., n− 1, set

fi = f(xi+1)− f(xi)
For any j ≥ i+2 it follows that f(xj)− f(xi) = fi + fi+1 + fi+2 + ...+ fj−1

Case 1 j = i+ 2
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Assume d(xi, xi+1) ≥ d(xi+1, xi+2) (the proof for d(xi, xi+1) ≤ d(xi+1, xi+2) is
similar.) Then

d(xi+1, xi+2) ≤ ⌈
5
2k+1

5 ⌉ ≤
{

k+1
2 if k is odd

k+2
2 if k is even

and therefore, d(xi+1, xi+2) ≤ k+2
2 . It suffices to consider the following sub-

cases

Case 1.1 xi is between xi+1 and xi+2

Then d(xi+1, xi+2) ≥ d(xi, xi+1) . Since we assume d(xi, xi+1) ≥ d(xi+1, xi+2),
we have d(xi, xi+1) = d(xi+1, xi+2) ≤ k 2

2 and dPn(xi, xi+2) ≤ 2 from which we
have d(xi, xi+2) = 1. Hence,

f(xi+2)− f(xi) = fi + fi+1

= k + 1− d(xi, xi+1) + k + 1− d(xi+1, xi+2)

≥ 2k + 2− 2(
k + 2

2
)

= k + 1− d(xi, xi+2)

Case 1.2 xi+1 is between xi and xi+2

This implies

d(xi, xi+2) = ⌈dPn (xi,xi+1)+dPn (xi+1,xi+2)
5 ⌉ ≥ d(xi, xi+1) + dPn(xi+1, xi+2)− 1

by Lemma 1.
Similar to the calculations above, we have f(xi+2)− f(xi) ≥ k+1− d(xi, xi+2)

Case 1.3 xi+2 is between xi and xi+1

Assume k is odd or min {dPn(xi, xi+1), dPn(xi+1, xi+2)} ≤ 5
2k , then we have

d(xi+1, xi+2) ≤ k+1
2 and

d(xi, xi+2) = ⌈dPn (xi,xi+1)−dPn (xi+1,xi+2)
5 ⌉ ≥ dPn(xi, xi+1) − dPn(xi+1, xi+2)

by Lemma 1.
Hence, f(xi+2)− f(xi) ≥ k + 1− d(xi, xi+2)

If k is even and min {dPn(xi, xi+1), dPn(xi+1, xi+2)} = 5
2k + 1 then by our

assumption it must be that dPn(xi+1, xi+2) = 5
2k + 1 ≡ 1 or 3(mod5) and

dPn(xi, xi+1) ≡ 0, 2, or 4(mod5). Thus we have,
d(xi, xi+2) = d(xi, xi+1)− d(xi+1, xi+2) + 1
which implies
f(xi+2)− f(xi) = 2k + 2− (d(xi, xi+2)− d(xi, xi+2)− 1)− d(xi+1, xi+2) ≥

2k + 3− d(xi, xi+2)− 2(k+2
2 ) = k + 1− d(xi, xi+2)

Case 2 j = i+ 3

Case 2.1
The sum of some pair of the distances d(xi, xi+1), d(xi+1, xi+2), and d(xi+2, xi+3)
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is at most k + 2. Then
f(xi+3) − f(xi) = 3k + 3 − d(xi, xi+1) − d(xi+1, xi+2) − d(xi+2, xi+3) ≥

3k + 3− (k + 2)− k > k + 1− d(xi, xi+3)

Case 2.2
The sum of any pair of distances d(xi, xi+1), d(xi+1, xi+2), and d(xi+2, xi+3)

is greater than k+2. If we assume further that d(xi, xi+1) ≥ d(xi+1, xi+2) (the
proof for d(xi, xi+1) ≥ d(xi+1, xi+2) is similar ), from the calculation in case
1, we have d(xi+1, xi+2) ≤ k+2

2 . By our hypnosis it follows that d(xi, xi+1)

and d(xi+2, xi+3) must both be greater than k+2
2 . This result together with

diam(P 5
n) = k and our assumption that the sum of any pair of distances

d(xi, xi+1), d(xi+1, xi+2), and d(xi+2, xi+3) is greater than k+2, xi must appear
before xi+2, then xi+1, then xi+3, from left to right on the fifth power path (or
xi+3 must appear before xi+1, then xi+2, then xi). Therefore,

d(xi, xi+3) ≥ d(xi, xi+1) + d(xi+2, xi+3)− d(xi+1, xi+2)− 1
Therefore, we have
f(xi+3)−f(xi) = 3k+3−d(xi, xi+1)−d(xi+1, xi+2)−d(xi+2, xi+3) ≥ 3k+3−

d(xi, xi+3)−2d(xi+1, xi+2)−1 ≥ 3k+3−d(xi, xi+3)−2(k+2
2 ) ≥ k+1−d(xi, xi+3)

Case 3 j ≥ i+ 4
Since min {dPn(xi, xi+1), dPn(xi+1, xi+2)} ≤ k+2

2 and fi ≥ k+1−d(xi, xi+1)

for any i, we have max {fi, fi+1} ≥ k
2 for any 1 ≤ i ≤ n− 2

Therefore
f(xj)−f(xi) ≥ (fi+fi+1)+(fj+2+fj+3) ≥ (k2+1)+(k2+1) > k+1−d(xi, xj)

Using Lemma 5, it will now be easy to show that the labelings we found are
radio-labelings.
To show the existence of a radio-labeling of P 5

n achieving the desired lower
bound, we consider the cases separately according to n(mod 10). For each de-
sired radio-labeling, f given the following, we shall first define a permutation(line-
up) of the vertices V (P 5

n) = {x1, x2, ..., xn} then define f by f(x1) = 0 and for
all 1 ≤ i ≤ n− 1, f(xi+1) = f(xi) + k + 1− d(xi, xi+1).

Case 1 n ≡ 0(mod10) (rn(P 5
n) ≤ 5

2k
5 + 1)

When n ≡ 0 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q ⇒ k = diam(P 5
n) = 2q.

So n = 10, 20, 30, . . . . For this case we were able to find a pattern where the
span matched the general lower bound found earlier. The easiest way to describe
the pattern we found is by looking at the levels of the vertices.

Figure 12: The levels of the vertices of P20

Take P 5
20 for example, we start with the left vertex with level 0. Then we move

to the right vertex with level 5 followed by the left vertex with level 5. Next we
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go to the right vertex with level 1 followed by the left vertex with level 9. Then
we go to the right vertex with level 6 followed by the left vertex with level 4,
etc.... So the pattern for labeling P 5

20 looks as follows:
L0-R5-L5-R1-L9-R6-L4- R2-L8-R7-L3-R3-L7-R8-L2-R4-L6-R9-L1-R0
Where Ll represents a left vertex with level l and Rl represents a right vertex
with level l. After close examination, we noticed that the pattern for P 5

20 can
be re-written as:
L0-R(5q−5)-L5-R1-L(5q−1)-R6-L(5q−6)-R2-L(5q−2)-R7-L(5q−7)-R3-L(5q−
3)
-R8-L(5q − 8)-R4-L(5q − 4)-R9-L1-R0.
We also found that this pattern can be extended for all P 5

n when n = 10q. So
in general the pattern is:

Thus x1 = L0, x2 = R(5q − 5),x3 = L5,. . . ,xn = x10q = R0. The values
above the arrow show the distances between the two consecutive vertices. By
Lemma 5, f is a radio-labeling for P 5

10q. Observe from above, there are five
possible distances in P 5

10q between consecutive vertices, 1, 2, q, q+1, and q+2,
with the number of occurrences 1, 3, q, 5q−1, and 4q−4 respectively. It follows
by direct calculation (note that q = k

2 ) that

f(x10q) = (10q − 1)(k + 1)−
∑10q−1

i=1 d(xi, xi+1) =
5
2k

2 + 1

As an example, the following figures show our pattern for the first two cases
for n = 10q:

Figure 13: A radio-labeling of P 5
10
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Figure 14: A radio-labeling of P 5
20

Case 2 n ≡ 9(mod 10) (rn(P 5
n) ≤ 5

2k
5 + 1)

When n ≡ 9 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q − 1 ⇒ k = diam(P 5
n) = 2q. So

n = 9, 19, 29, 39, . . . . Let G = P 5
10q and H be the subgraph of G induced by the

vertex set v1, v2, v3, ..., v10q−1. Then H ∼= P 5
10q−1, diam(H) = diam(G) = 2q,

and dG(u, v) = dH(u, v) for every u, v ∈ V (H). Let f be a radio-labeling for G,
then f |H is also a radio-labeling for H. By Case 1, rn(P 5

10q−1) ≤ rn(P 5
10q) ≤

5
2k

2 + 1.
Case 3 n ≡ 2(mod 10) (rn(P 5

n) ≤ 5
2k

5 − 1
2 )

When n ≡ 2 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q+2 ⇒ k = diam(P 5
n) = 2q+1. So

n = 12, 22, 32, . . . . For this case we were able to find a pattern where the span
matched the general lower bound found earlier. The easiest way to describe the
pattern we found is by looking at the levels of the vertices.

Figure 15: The levels of the vertices of P22

Take P 5
22 for example, we start with the left vertex with level 0. Then we move

to the right vertex with level 10 followed by the left vertex with level 5. Now we
go to the right vertex with level 5 then the left vertex with level 10. Next we go
to the right vertex with level 1 followed by the left vertex with level 9. Then we
go to the right vertex with level 6 followed by the left vertex with level 4, etc. . . .
So using the same method for representing the pattern in case 1,n ≡ 0(mod 10)
the pattern for labeling P 5

22 looks as follows:
L0-R10-L5-R5-L10-R1-L9-R6-L4- R2-L8-R7-L3-R3-L7-R8-L2-R4-L6-R9-L1-R0
After close examination we noticed that the pattern for P 5

22 can be re-written
as:
L0-R(5q)-L5-R(5q − 5)-L10-R1-L(5q − 1)-R6-(5q − 6)-R2-L(5q − 2)-R7
-L(5q − 7)-R3-L(5q − 3)-R8-L(5q − 8)-R4-L(5q − 4)-R9-L1-R0.
We also found that this pattern can be extended for all P 5

n when n = 10q + 2.
So in general, the pattern is:
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Thus x1 = L0, x2 = R(5q),x3 = L5,. . . ,xn = x10q+2 = R0. The values
above the arrow show the distances between the two consecutive vertices. By
Lemma 5, f is a radio-labeling for P 5

10q+2. Observe from above, there are four
possible distances in P 5

10q+2 between consecutive vertices, 1, 2, q+1, and q+2,
with the number of occurrences 1, 3, 5q + 1, and 5q − 4 respectively. It follows
by direct calculation (note that q = k−1

2 ) that

f(x10q+2) = (10q + 1)(k + 1)−
∑10q+1

i=1 d(xi, xi+1) =
5
2k

2 − 1
2

As an example, the following figures show our pattern for the first two cases
for n = 10q + 2:

Figure 16: A radio-labeling of P 5
12

Figure 17: A radio-labeling of P 5
22

Case 4 n ≡ 3(mod 10) (rn(P 5
n) ≤ 5

2k
5 + 1

2 )

When n ≡ 3 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q+2 ⇒ k = diam(P 5
n) = 2q+1. So
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n = 13, 23, 33, . . . . For this case we were able to find a pattern where the span
matched the general lower bound found earlier. The easiest way to describe the
pattern we found is by looking at the levels of the vertices.
Take P 5

23 for example, we start with the center vertex. Then we move to the
right vertex with level 11. followed by the left vertex with level 5. Now we go
to the right vertex with level 6 then the left vertex with level 10. Next we go to
the right vertex with level 1 followed by the left vertex with level 7. Then we go
to the right vertex with level 4 followed by the left vertex with level 2, etc. . . .
So using the same method for representing the pattern in case 1,n ≡ 0(mod 10)
the pattern for labeling P 5

23 looks as follows:
C-R11-L5-R6-L10-R1-L7-R4-L2-R9-L3-R8-L8-R3-L9-R2-L4-R7-L11-R5-L6-R10-
L1
Where C represents the center, which has a level of 0. After close examination
we noticed that the pattern for P 5

22 can be re-written as:
C-R(5q + 1)-L5-R(5q − 4)-L10-R1-L(5q-3) − R4 − (5q − 8)-R9-L3-R(5q-2)-L8-
R3-L(5q-1)-R2-L(5q-6)R(5q-3)-L(5q+1)-R5-L(5q-4)-R10-L1
We also found that this pattern can be extended for all P 5

n when n = 10q + 3.
So in general, the pattern is:

Thus x1 = C, x2 = R(5q + 1),x3 = L5,. . . ,xn = x10q+3 = L1. The values
above the arrow show the distances between the two consecutive vertices. By
Lemma 5, f is a radio-labeling for P 5

10q+3. Observe from above, there are four
possible distances in P 5

10q+3 between consecutive vertices, q, q+1, q+2, and 2q,
with the number of occurrences 2q − 1, 5q + 3, 3q − 1, and 1 respectively. It
follows by direct calculation (note that q = k−1

2 ) that

f(x10q+3) = (10q + 2)(k + 1)−
∑10q+2

i=1 d(xi, xi+1) =
5
2k

2 + 1
2

As an example, the following figures show our pattern for the first two cases
for n = 10q + 3:
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Figure 18: A radio-labeling of P 5
13

Figure 19: A radio-labeling of P 5
23

Case 5 n ≡ 1(mod 10)

When n ≡ 1 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q + 1 ⇒ k = diam(P 5
n) = 2q. So

n = 11, 21, 31, . . . . For this case we were able to find a pattern that matches
what we believe to be the sharper lower bound, which we will work on proving
in the fall. The easiest way to describe the pattern we found is by looking at
the levels of the vertices.
Take P 5

21 for example, we start with the left vertex with level 0. Then we move
to the right vertex with level 10 followed by the left vertex with level 2. Now we
go to the right vertex with level 9 then the left vertex with level 3. Next we go
to the right vertex with level 8 followed by the left vertex with level 7. Then we
go to the right vertex with level 4 followed by the left vertex with level 6, etc. . . .
So using the same method for representing the pattern in case 1,n ≡ 0(mod 10)
the pattern for labeling P 5

21 looks as follows:
L1-R10-L2-R9-L3-R8-L4-R7-L5-R6-L6-R5-L7-R4-L8-R3-L9-R2-L10-R1-C
Where C represents the center, which has a level of 0. After close examination,
we noticed that the pattern for P 5

21 can be re-written as:
L1-R(5q)-L2-R(5q− 1)-L3-R(5q− 2)-L4-R(5q− 3)-L5-(5q− 4)-L6-R(5q− 5)-L7-
R(5q − 6)-L8-R(5q-7)-L9-R(5q-8)-L10-R1-C
We also found that this pattern can be extended for all P 5

n when n = 10q + 1.
So in general, the pattern is:

L1
5q+1−→ R(5q)

5q+2−→ L2
5q+1−→ R(5q − 1)

5q+2−→ L3
5q+1−→ R(5q − 2)

5q+2−→ L4
5q+1−→

R(5q − 3)
5q+2−→ ...

5q+2−→ L(5q − 1)
5q+1−→ R2

5q+2−→ L(5q)
5q+1−→ R1

1−→ C
Thus x1 = L1, x2 = R(5q),x3 = L2,. . . ,xn = x10q+1 = C. The values above
the arrow show the distances between the two consecutive vertices. By Lemma
5, f is a radio-labeling for P 5

10q+1. Observe from above, there are two possible
distances in P 5

10q+1 between consecutive vertices, 1, and q+1, with the number
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of occurrences 1, and 10q− 1 respectively. It follows by direct calculation (note
that q = k

2 ) that

f(x10q+1) = (10q)(k + 1)−
∑10q

i=1 d(xi, xi+1) =
5
2k

2 + k
2 = 5

2k
2 + q

This the sharpest upper-bound we found, as stated before we will work on a
proving this is also the lower-bound in the fall. As an example, the following
figures show our pattern for the first two cases for n = 10q + 1:

Figure 20: A radio-labeling of P 5
11

Figure 21: A radio-labeling of P 5
21

Case 6 n ≡ 8(mod 10)
When n ≡ 8 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q − 2 ⇒ k = diam(P 5

n) = 2q. So
n = 8, 18, 28, 38, . . . . Let G = P 5

10q and H be the subgraph of G induced by the
vertex set v1, v2, v3, ..., v10q−2. Then H ∼= P 5

10q−2, diam(H) = diam(G) = 2q,
and dG(u, v) = dH(u, v) for every u, v ∈ V (H). Let f be a radio-labeling for G,
then f |H is also a radio-labeling for H. By Case 1, rn(P 5

10q−2) ≤ rn(P 5
10q) ≤

5
2k

2 + 1.
This the sharpest upper-bound we found, as stated before we will work on a
proving this is also the lower-bound in the fall.

Case 7 n ≡ 8(mod 10)
When n ≡ 7 (mod 10) ⇒ ∃ q ∈ N s.t. n = 10q − 3 ⇒ k = diam(P 5

n) = 2q. So
n = 7, 17, 27, 37, . . . . Let G = P 5

10q and H be the subgraph of G induced by the
vertex set v1, v2, v3, ..., v10q−3. Then H ∼= P 5

10q−3, diam(H) = diam(G) = 2q,
and dG(u, v) = dH(u, v) for every u, v ∈ V (H). Let f be a radio-labeling for G,
then f |H is also a radio-labeling for H. By Case 1, rn(P 5

10q−3) ≤ rn(P 5
10q) ≤

5
2k

2 + 1.
This the sharpest upper-bound we found, as stated before we will work on a
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proving this is also the lower-bound in the fall.

Cases 8-10 We will be working on finding the upper bound for the remaining
cases in the fall.

Conclusion

We proved the general lower bound of the radio-number of P 5
n and proved the

upper bound for 7 of the 10 cases. In the fall we will finish our work with the
special cases of the lower bound and prove the upper bound for the remaining
three cases.
Our results thus far are summed up in the table bellow:
n k General Lower Bound Upper Bound
10q 2q 5

2k
2 + 1 5

2k
2 + 1

10q + 1 2q 5
2k

2 + 1 5
2k

2 + q
10q + 2 2q + 1 5

2k
2 − 1

2
5
2k

2 − 1
2

10q + 3 2q + 1 5
2k

2 + 1
2

5
2k

2 + 1
2

10q + 4 2q + 1 5
2k

2 + 1
2

10q + 5 2q + 1 5
2k

2 + 3
2

10q + 6 2q + 1 5
2k

2 + 3
2

10q + 7 2q + 2 5
2k

2 5
2k

2 + 1
10q + 8 2q + 2 5

2k
2 5

2k
2 + 1

10q + 9 2q + 2 5
2k

2 + 1 5
2k

2 + 1
The following table gives the results we expect to find by the end of the fall
term when we finish the proofs mentioned above.
n k General Lower Bound Upper Bound
10q 2q 5

2k
2 + 1 5

2k
2 + 1

10q + 1 2q 5
2k

2 + q 5
2k

2 + q
10q + 2 2q + 1 5

2k
2 − 1

2
5
2k

2 − 1
2

10q + 3 2q + 1 5
2k

2 + 1
2

5
2k

2 + 1
2

10q + 4 2q + 1 5
2k

2 + 3
2

5
2k

2 + 3
2

10q + 5 2q + 1 5
2k

2 + 5
2

5
2k

2 + 5
2

10q + 6 2q + 1 5
2k

2 + 5
2

5
2k

2 + 5
2

10q + 7 2q + 2 5
2k

2 + 1 5
2k

2 + 1
10q + 8 2q + 2 5

2k
2 + 1 5

2k
2 + 1

10q + 9 2q + 2 5
2k

2 + 1 5
2k

2 + 1
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